
Chapter 3

The acoustic source and environment

3.1 Introduction

Our sense of hearing is concerned much more with acoustic sources than with their re�ections from
the environment. This is in stark contrast to vision that primarily relies on optical images that are
formed using re�ected light from objects. Therefore, understanding the acoustics of typical sources
in our living environment can potentially inform us about the type of signals that hearing has to deal
with. However, much of hearing science was established using observations and insights obtained
from a number of mathematically idealized and primitive stimuli that rarely (or never) occur in
nature: pure tones, clicks, white noise, complex (harmonic) tones, and to a lesser extent, amplitude-
and frequency-modulated tones. Judging from the prevalence of these stimuli in experiments in
mammals (perhaps except for bats), it may be naively concluded that pure tones and harmonicity
are common, that modulation is a relatively special feature in natural sounds, and that white noise
is a common type of noise. The reality is not so clear-cut, though. Of course, nobody has made
explicit claims that these stimuli are literally representative of realistic acoustics, and in fact, there
has been a greater push in recent years for employing more complex stimuli and creating heightened
realism in the laboratory. But the legacy of the mathematically simple stimuli still dominates the
�eld.

The potential misrepresentation of the acoustic world in auditory experimentation is not the most
problematic implication that these stimuli have on our understanding of the hearing system. Rather,
it is the idea that signals can contain no modulation information. Real sounds have a beginning
and an end, which means that they are modulated, even if the modulation appears extremely
slow or aperiodic. Furthermore, in many signals, amplitude modulation and frequency modulation
happen concurrently. Therefore, an acoustic source can become an object of hearing only through
modulation�only by forcing it into vibration. Acoustic objects can become meaningful only if we
consider these two necessary constituents of sound: carriers and modulators. Information transfer
as sound requires both domains to be present.

The goal of this chapter is to provide a counter-narrative to the classical textbook approach of
the ideal acoustic stimuli. At least a subset of the facts that are included in this overview are going
to be familiar to readers with background in acoustics�only not in the way that they are brought
together here. We will generally attempt to show that frequency is seldom constant, harmonicity
and periodicity are rare, dispersion is common, and modulation of all kinds is ubiquitous. This
will be illustrated using available examples from literature. After a short introduction that provides
universally applicable tools to mathematically represent waves, the chapter proceeds to cover aspects
of the acoustical sources themselves, as well as their acoustical environment. The conclusion is that
the most general representation of a broadband acoustical sound is also the most suitable one:
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carrier waves modulated by complex envelopes. The changes incurred by the environment are most
generally understood as changes to the complex envelope, but they may also lead to the stochastic
broadening of the carrier.

3.2 Physical waves

Intuition into many fundamental problems in acoustics and hearing comes from linear wave theory
and with it, Fourier analysis. Due to the equivalence between the spectral and the temporal do-
main representations, the linear perspective tends to be heavily reliant on the spectral nature of
the solutions, which is most suitable for stationary signals. In reality, though, hearing deals with
nonstationary signals. Using Fourier analysis, signals such as frequency-modulated tones that elicit
pitch change over time, require broadband representations that do not correspond well to perceptual
insight, even if they are mathematically correct (e.g., Blinchiko� and Zverev, 2001, pp. 383�395;
see Figures 15.2 and 15.8 for examples of the Fourier spectra of frequency-modulated signals).
This divide has required analytical tools that allow the spectrum to change over time, which were
sometimes imported from time-frequency analysis or communication signal processing, and have
been gradually incorporated and standardized in hearing theory. While this development enabled
more freedom in accounting for the sensation of signals that vary both in frequency and in time, it
has widened the gulf between classical acoustical theory, where much of the intuition lies, and the
physical and perceptual reality.

This section relies heavily on an approach that was crystallized by Whitham (1999), but has
antecedents in Havelock (1914) and Lighthill and Whitham (1955). We will use this approach to
create a �rm link between the signal representation that is more appropriate for temporal analysis
and the acoustic waves in the physical world.

3.2.1 Linear analysis

Waves describe a very broad class of physical phenomena, which include acoustic, elastic, and
electromagnetic �elds, among many others. Incidentally, the simplest problems of these three �elds
are also described by the same hyperbolic di�erential equation�the homogeneous wave equation,
which in three dimensions is
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waves, displacement in elastic waves, and electric and magnetic �elds in electromagnetic waves. c is
the propagation speed of the wave in the medium. A simple change of variables leads to the general
solution of the wave equation

ψ(x, t) = f(x− ct) + g(x+ ct) (3.2)

we use the scalar one-dimensional equation for simplicity, but the results are easily generalized to
three dimensions. The solution is therefore a superposition of two waves going in opposite directions.
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The forward-propagating wave is therefore represented by the second of these two �rst-order di�er-
ential equations

∂ψ

∂x
+

1

c

∂ψ

∂t
= 0 (3.4)

A solution for this linear equation is

ψ(x, t) = aei(ωt−kx) (3.5)

where the angular frequency ω and the wavenumber k are real constants and the complex amplitude
a are all determined by the initial and boundary conditions. It is implied that only the real part of
the solution is used in physical problems, although the imaginary may be used just as well. From the
solution, we have the speed of sound, or the phase velocity, which is de�ned as the ratio between
the temporal (radial) and the spatial frequencies

c = vp =
ω

k
(3.6)

However, since the realistic physical medium in which the wave propagates is generally nonuniform,
the phase velocity depends on the frequency. Then, as the spatial and temporal frequencies are
interdependent, their relation can be expressed using either one of the two complementary forms of
the dispersion relations27

ω = ω(k) k = k(ω) (3.7)

General solutions to the linear wave equation and related problems can then be obtained in the
frequency domain using the Fourier integral, so that

ψ(x, t) =

∫ ∞

−∞
F (k)ei[ω(k)t−kx]dk (3.8)

where F (k) is a function that can be determined from the boundary and initial conditions. This
approach often results in series of solutions, or modes�each of which is associated with a speci�c
combination of ω and k. The superposition of all the modes gives rise to the (full-spectrum) wave
shape in the time-domain. Many of the famous problems in acoustics have been solved using this
and related methods, which result in series of modes�sometimes with harmonic dependence.

When the propagation is composed of several waves of di�erent frequency pairs (ωn, kn), it
becomes meaningful to divide it into a fast-moving carrier and a slowly-varying envelope (or mod-
ulation). The simplest illustration of this procedure is given by the superposition of two waves of
equal amplitudes and proximate frequencies, so that ω1 = ωc +∆ω, ω2 = ωc −∆ω, k1 = kc +∆k,
and k2 = kc −∆k. The two frequencies beat as (Rayleigh, 1945, �191)

ψ(x, t) = a cos(k1x− ω1t) + a cos(k2x− ω2t) = 2a cos(∆ωt−∆kx) cos(ωct− kcx) (3.9)

The high-frequency part of the wave, the carrier (ωc, kc), moves at phase velocity, vp = ωc/kc,
whereas the low-frequency envelope moves at a velocity

vg(k) =
∆ω

∆k
(3.10)

27More precisely, Eqs. should be considered to be the dispersion formula, rather than the more general integral
transformations that are implied by the dispersion relations and are due to causality constraints (Nussenzveig, 1972,
footnote 13, p. 46).
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where vg is called the group velocity. In the limit of small frequency and wavenumber di�erences,
vg can be replaced with derivative

lim
∆ω,∆k=0

vg(k) =
dω

dk
(3.11)

As it turns out, this de�nition holds in general and can be derived in a number of di�erent ways and
not necessarily through beating (Brillouin, 1960; Lighthill, 1965; Whitham, 1999).

In uniform, isotropic and linear systems, vg = vp and the system is dispersionless. More
generally, though, all physical media are dispersive, so vg ̸= vp. As the shape of the wave propagation
is determined by its envelope, it becomes distorted through propagation in dispersive media, as the
di�erent phases that give rise to the envelope shape become misaligned far away from the source of
oscillation. Dispersive spatial and temporal e�ects are illustrated in Figures 3.1 and 3.2 for dispersion
relations of the form ω(k) ∼ k2 and k(ω) ∼

√
ω that characterize vibrations in thin plates.

Dispersion and nonlinearities of the �eld give rise to more complex wave equations even in the
simplest problems. For example, Eq. 3.4 becomes quasilinear as the velocity c is indirectly dependent
on the �eld itself

∂ψ

∂t
+ c(ψ)

∂ψ

∂x
= 0 (3.12)

This equation applies to a wide range of wave problems that are not necessarily linear (or even directly
relevant in acoustics). However, the concept of dispersion holds for all wave problems, including
those that are represented by other di�erential equations. It can be shown that the dispersion
relation of a problem contains the same information as in the di�erential equation itself.

3.2.2 Dispersion analysis

While Fourier analysis is limited to linear systems, the concepts of dispersion and group velocity are
applicable in nonlinear problems as well. A universal solution form, which is suitable for dispersion
problems and for general nonlinear systems, allows both ω and k to locally vary in space and time.
Consider a wave that has a well-de�ned amplitude a(x, t) and phase φ(x, t) that can be expressed
using

ψ(x, t) = Re
[
a(x, t)eiφ(x,t)

]
(3.13)

We consider solutions with a constant amplitude and a phase function that varies in time and space

φ(x, t) = ωt− kx (3.14)

Di�erentiating the phase, we have

k(x, t) = −∂φ
∂x

ω(x, t) =
∂φ

∂t
(3.15)

Di�erentiating these expressions again yields

∂k(x, t)

∂t
= − ∂2φ

∂x∂t

∂ω(x, t)

∂x
=

∂2φ

∂t∂x
(3.16)

Summing the two equations then results in

∂k(x, t)

∂t
+
∂ω(x, t)

∂x
= 0 (3.17)

Using the �rst dispersion relation in 3.7 with Eq. 3.17 gives

∂k(x, t)

∂t
+ vg(k)

∂k(x, t)

∂x
= 0 (3.18)
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Figure 3.1: The e�ects of dispersion on the spatial acoustic �eld on (from top to bottom)
pure tone, amplitude-modulated tone (200% depth), complex tone with six components, and a
complex tone with 60 components. All components (marked with N) were summed with zero
initial phase. Four conditions were computed corresponding to di�erent time points measured
in the same area, from left to right, at 0, 40, 200, and 400 ms. The dispersion relation is of
the form ω(k) ∼ k2, which describes a thin plate (Fletcher and Rossing, 1998, pp. 76�77) set
with the approximate properties of steel of 1 mm thickness, bulk modulus of 100 GPa, and
density 8000 kg/m3. The fundamental frequency is 100 Hz. All waveforms were normalized
to maximum amplitude of 1, for clarity.
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x = 0 m, y = 0 m

N = 1

x = 1 m, y = 1 m x = 5 m, y = 5 m x = 10 m, y = 10 m

N = 4 to 6

N = 1 to 6

N = 1 to 60

Figure 3.2: Similar to Figure 3.1, but displaying the time signal measured at di�erent points
on the X-Y plane. The dispersion relation of Figure 3.1 was inverted so that k(ω) ∼

√
ω.

where the dependence on k of the group velocity is now made explicit in vg(k). We can also use
the second dispersion relation in Eq. 3.7 to get a similar equation to 3.18 using ω instead of k

vg(k)
∂ω(x, t)

∂x
+
∂ω(x, t)

∂t
= 0 (3.19)

where the second term is the local frequency, frequency velocity, or frequency slope, which is intro-
duced in Eq. 6.31 and is characteristic of frequency modulation. Equations 3.18 and 3.19 have the
same form of the �rst-order hyperbolic equation as 3.12, although they were obtained in a di�erent
way. These equations take the universal form of conservation laws, which in this case was referred
to as wave conservation by Whitham (1999). In analogy to other conservation laws, k can be
thought of as the �ow of the wave and ω as its �ux.

In dispersionless systems, the wave propagation is uniform and both k and ω are space-invariant
and time-invariant, so their partial derivatives in Eqs. 3.18 and 3.19 are zero and the equations
become trivial. However, in dispersive media and nonlinear systems they convey information about
the time dependence of the waves in the system, which may not be accessible using constant
frequencies.

As the ears work largely as point receivers that detect acoustic waves that are one-dimensional
throughout most of the audio range (see �11.2), signal processing of sound can factor the wavenum-
ber k as a constant phase term, eikx0 at a point x0. In dispersionless systems, this phase is linear in
frequency and produces a delay eiωx0/c. Drawing from �lter theory (Blinchiko� and Zverev, 2001,
pp. 66�67), we refer to this phase as phase delay, which is generally given by

τp = −φ
ω

=
k(ω)x

ω
(3.20)

for phase of the general form of Eq. 3.14 that excludes the usual ωt term. In signal processing
of time signals, the wavenumber k is not considered directly�only the frequency. In the present
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treatment, considering the spatial dependence too, results in τp = x/vp = t for a linear dispersionless
system.

Similarly, it is also useful to quantify the deviation between the linear phase delay and any higher-
order phase dependence on ω, which can be indicative of dispersion. Most generally, we de�ne the
group delay with respect to the phase as28

τg = −dφ
dω

(3.21)

Using the same general phase and the dispersion relation of k(ω) we get

τg = x
dk(ω)

dω
=

x

vg
(3.22)

which can provide more insight if written as

τg =
vp
vg
t (3.23)

Therefore, in the dispersionless case where vg = vp, the group delay is equal to the phase delay, which
is another way to say that the modulation that is being carried by the wave retains its shape�it is
invariant to spatial and temporal shifts. In all other cases, the group delay quanti�es the amount of
dispersion, which grows the farther away the wave is from the origin and when the two velocities are
markedly di�erent. In normal dispersion (as opposed to anomalous dispersion) the group velocity is
lower than the phase velocity, and we obtain a positive group delay (Brillouin, 1960).

The group delay is especially useful in a narrowband range of frequencies, for which the carrier and
modulation frequencies are well-separated. With su�ciently narrow bandwidth, we are able to treat
the group delay as approximately constant, even in dispersive systems. In broadband, dispersive
media, and nonlinear systems, the group delay generally varies with frequency and becomes less
linear the farther away it is from the carrier. This reasoning can be inverted and provide a useful
operational de�nition for the rather vague �narrowband condition� that we highlight throughout �6:
a narrowband range of frequencies is taken such that the group delay changes only a little from its
mean value at the center frequency of the band (the carrier).

Note that if we let the phase be complex, this general wave analysis can be expanded to encom-
pass the variable amplitude a(x, t) as well, which can be insightful in absorptive systems (Vakman,
1997). However, as most of this work is concerned with phase and dispersion, the explicit consider-
ation of absorption will be relatively secondary.

3.2.3 Conclusion

This very brief introduction presents a universal approach to the representation of almost any wave,
using a generalized phase function. Essentially, we have two approaches that hinge on the funda-
mentally di�erent de�nitions for frequency that are discussed in �6.5.3�the Fourier frequency and
the instantaneous frequency. The two are the same only in the simplest of cases, which can be
considered approximately linear. Even if they yield mathematically identical solutions, each carries
a di�erent insight with it that may be incongruent with the other. When the acoustic system is
nonlinear, but is still spectrally analyzed using Fourier analysis, we risk not only losing insight of
the physics of the problem, but also downright misrepresenting its nature. Usually, the acoustic
conditions are close enough to linear that we can retain a certain �exibility in switching back and
forth between the Fourier and the instantaneous representations, depending on the problem. This
will enable us to reexamine some of the familiar acoustic problems that are most relevant to our
hearing world.

28For various derivations of this important formula, see Ville (1948) and Boashash (1992).
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3.3 Acoustic sources

Three general mechanisms can cause acoustic wave generation in a closed region of �uid: solid body
forces that create pressure gradients in the �uid, injection or removal of material from the region,
and �ow within the �uid that creates turbulence (Kinsler et al., 1999, pp. 140�142). Complex
acoustical sources such as human speech may contain elements of all three. The few examples that
are mentioned below are taken from the simplest and best studied sources, which illustrate that even
simple acoustics is susceptible to �ill-behaved� phenomena that may be naively associated only with
much more complex acoustics.

3.3.1 Primitive sound sources

Harmonic intervals are characterized by integer ratios of their constituent fundamental frequencies29.
The acoustic source itself may be considered harmonic if it produces an overtone series that is
inherently harmonic (and hence periodic)�something that is captured in the popular complex tone
stimulus. Such are the overtone series of the ideal string and the resonance series of the air column
(pipe). However, arbitrarily shaped structures do not generally produce harmonic overtones when
they vibrate. As harmony is a pillar of music that underlies consonance, it had to be progressively
engineered into musical instrument design over generations. Therefore, the comprehensive analysis
of acoustic sources in musical acoustics may be ideally-suited to identify �well-behaved� sources that
have mathematically convenient properties such as harmonicity.

This section is heavily based on Fletcher and Rossing (1998), who systematically reviewed the
physical acoustics of musical instruments. Many of the basic problems have been compiled by
Lord Rayleigh (1945), but modern observations and modeling have considerably supplemented the
classical (and sometimes idealized) solutions with a degree of realism.

Solid objects

Vibrating objects that are positioned in a �uid medium generate an acoustic �eld, which is determined
by the object structure and its mechanical properties. The vibrations of solid objects can be shown
to consist of normal modes of oscillation (also called eigenmodes), which are mathematically
orthogonal (independent). Each mode is spectrally characterized by a natural frequency (also
eigenfrequency) and, spatially, by a geometrical pattern of vibration (eigenfunction). Temporal
characterization is divided into transient response (in terms of damping constant and decay time),
and a steady-state time dependence that is generally taken to be sinusoidal. Depending on how
and where the object is excited, combinations of the normal modes with di�erent weights can be
observed. Therefore, without loss of generality, the vibration of the object in the coordinate system
of the object itself can be represented by

ηnml(x, y, z, t) =
∞∑
n=0

∞∑
m=0

∞∑
l=0

anmlΨnml(x, y, z)e
iωnmlt (3.24)

where the displacement from equilibrium η varies in time and space, here in Cartesian coordinates.
The most general case is given, which is three-dimensional with no special symmetry. Three degrees
of freedom correspond to the three dimensions (e.g., of a thick plate), where each one is associated

29Note that the word �harmonic� is used in two related meanings in the wave physical literature. Harmonic
dependence entails that the temporal dependence of the solution goes as eiωt. Harmonic intervals or sounds assumes
that a few such solutions have natural frequencies that are related by integer ratios. In the present work, unless we
refer speci�cally to a harmonic solution, harmonic should always be understood in the second meaning.
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with an integer n, m, and l. The eigenfunction is given by Ψnml(x, y, z) with its respective eigen-
frequency ωnml, which is factored into the steady-state harmonic dependence. The weight of each
mode in the sum is given by the complex amplitude anml.

Only systems with very simple geometries can be studied in closed-form�strings, bars, mem-
branes, and plates are the primary ones among them. Typically, the normal modes of acoustic
sources are studied spectrally�by noting prominent peaks in their spectrum�and mapping them to
corresponding eigenfunctions. Most research characterizes the sources based on their steady-state
response. Some instruments, such as the grand piano, have an idiosyncratic transient response that
has been studied in depth, which showed the temporal envelope of each mode, as well as a distinct
attack (onset) noise from the hammer action (Fletcher and Rossing, 1998, pp. 390�396).

The simplest vibrating solid object is the string. The ideal string is one-dimensional and its
normal modes of vibration are exactly those studied by Pythagoras and found in the Fourier series
solution of the string equation (Ibid., pp. 39�44). This string requires perfectly rigid support at
its ends and zero bending sti�ness. If these requirements are relaxed, the string overtones tend to
deviate from harmonicity, as they are no longer integer multiples of the fundamental. So, if the
end supports of the string can move, then the overtone series ratios become more compressed than
the ideal integer overtone series (Ibid., pp. 52�53). Or, when the bending sti�ness of the string
(its two-dimensional cross-sectional elasticity) is taken into account, the overtone series become
stretched (Ibid. 64�66).

The string can be mathematically extended into a two-dimensional thin bar or membrane. Like
strings, bars vibrate harmonically in their longitudinal modes (Ibid., pp. 56-57), yet they vibrate
inharmonically in their much more important transverse modes (Ibid., pp. 58�63). The ideal
rectangular thin membrane also contains harmonic overtones, but they co-occur with inharmonic
ones as well. If air loading, bending sti�ness, or sti�ness to shear is introduced to the membrane, or
if the geometry is non-square (e.g., circular membranes) the overtone series can become completely
inharmonic. Other shapes that have been modeled such as plates (thick membranes) and shells
generally have inharmonic modes, even when their geometry is relatively symmetrical.

Modal dispersion

The dispersion of the normal modes is well-studied in many vibrating objects, which entails that the
speed of vibrations in the di�erent modes within the object depends on their respective eigenfre-
quency. Simple dispersive sources are the sti� string, the plate (Figure 3.1), and transverse waves
in bars (Fletcher and Rossing, 1998, pp. 59�60, 65�66, and 77). Therefore, an envelope traveling
within the vibrating object does not retain its shape in the object area and over time. The simplest
case study for envelope dispersion is a single pulse, as its shape is dependent on the relative timing
of the superimposed modes. This means that when an object is impacted�forced by an impulse
somewhere on its surface, rubbed, broken, deformed�its response is not only a�ected by its unique
vibrational behavior, but also by how and where it was impacted. As an impulse excites all modes in
the structure, the transient pulse shape will necessarily depend on where it is measured in the �eld
surrounding the object in the medium30.

Resonators

Complex vibrating objects are often systems that consist of simple solid components, which are
coupled to additional structures that vibrate and resonate. This coupling may accentuate and

30Interestingly, as noted by Brillouin (1960), dispersion in bars was analyzed �rst by Lord Rayleigh, which led
him to formally talk about group velocity (Rayleigh, 1945, �191), although the concept was originally introduced by
William R. Hamilton (1839) without calling it by name.
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sometimes shift the modes of the standalone oscillator (Fletcher and Rossing, 1998, pp. 102�132).
Many musical instruments employ resonant tubes and cavities, which are also commonly found
in animal vocalization systems, and are of particular importance for modeling the vocal tracts of
mammals and birds.

Pipes, like strings, are in good approximation one-dimensional at low frequencies where plane
waves are the only normal mode that can propagate and carry sound in the pipe. An ideal pipe has
a nearly harmonic series of resonances that depend on its length and termination (open or closed).
The resonance frequencies tend to be slightly stretched due to re�ections from the pipe ends that
increase with diameter (Ibid., pp. 196�205). Other realistic deviations from harmonicity can take
place when the walls of the pipe are not hard but yielding, which means that they have a �nite
(reactive) impedance (Ibid., pp. 202�205). Additionally, air has a �nite viscosity near the walls,
which causes viscous losses (mostly during �ow) that a�ect the modes as well (Ibid., pp. 193�
196). Also, thermal losses may be caused at the boundaries through compression, as the thermal
conductance of the boundary material tends to be much higher than air (Morse and Ingard, 1968,
pp. 290�292). Pipes shaped as conical horns can also exhibit nearly harmonic modes�in particular
conical and compound (Bessel) shaped horns (Fletcher and Rossing, 1998, 216�218 and 461�464).
At high frequencies, additional propagation modes can exist in the resonators (Morse and Ingard,
1968, pp. 492�498). Each mode has a cuto� frequency below which energy cannot propagate in the
mode, as well as a characteristic spatial distribution and phase velocity associated with it, making
the pipe dispersive.

Pipes have been mostly analyzed in the spectral domain, which provides steady-state solutions for
harmonic inputs. The computation and measurement of transient signals is much more challenging
and reports have been scarce. For example, a model of the attack transient of a �ute (simple air
column with holes) showed that it takes the instantaneous frequency about 5 ms to settle to a
steady-state value to produce notes at 1000�1500 Hz (Keefe, 1990).

Mode-Locking

Despite the inherent inharmonicity of many of the vibrational systems mentioned, inharmonic modes
can sometimes phase-lock to produce precise harmonic oscillations (Fletcher, 1978). There are
several conditions that have to be met for this to take place. First, the modes have to be nearly
harmonically related with simple ratios of small integers n/m (for n + m < 4). Additionally,
the modes should be strongly coupled and driven in large amplitudes by a nonlinear force. These
conditions are relatively restrictive and the prevalence of mode-locking in natural acoustic sources
is unknown. Outside of the realm of musical instruments, mode-locking was measured in parts of
the zebra-�nch song, which suggests that the dynamics of their syrinx can be directly responsible
for mode-locking (Fee et al., 1998).

Air�ow generators

There are two primary air�ow sound generation mechanisms that are employed in various musical
instruments. The �rst is buzzing a valve (such as a reed or lips), as in saxophone, harmonica, and
trumpet, as well as in the human vocal folds and the bird syrinx. As these generators are often
coupled to an air column in a pipe, the combined system can give rise to harmonic sounds, which
are excited by the nonlinear dynamics of the reed that modulates the air�ow in the pipe (Fletcher
and Rossing, 1998, pp. 418�424). The second mechanism generates jet air�ow over a sharp edge
as in whistles, �utes, and organs (Ibid., pp. 418�424). This mechanism is also nonlinear and is
responsible for creating broadband noise when the jet �ow is strong enough to cause turbulence,
which is then shaped (�ltered) by the resonances of the pipe (Ibid., pp. 528�529).
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Stochastic sources

Completely �uid sound sources (e.g., water waves, waterfall, wind blowing) or those generated by
large ensembles of similar units (e.g., walking on gravel, audience hum, rain) are very common and
may also generate unique sounds (Schafer, 1994, pp. 158�160). These sounds are broadband and
stochastic and do not have any stable vibrational modes that are associated with speci�c objects.
Therefore, the analysis of turbulent and other complex sounds is generally done using stochastic
tools (Morse and Ingard, 1968, pp. 768�772). Friction between objects is another common sound
source that comes across as noise, although it may be a result of complex excitation of di�erent
harmonic modes that are generally not harmonic (Sera�n, 2004). A qualitative taxonomy of everyday
acoustic sources, based on their physical state and the type of force or function that excites them
can be found in Gaver (1993).

3.3.2 Speech and other animal sounds

Human speech and animal vocalizations constitute complex acoustic sources that can be modeled
as several basic components coupled together to generate sound. Two in�uential theories were
developed with relation to human speech (vowel production, in particular). The most in�uential
speech model is the source-�lter theory (originally introduced by Chiba and Kajiyama, 1958/1942,
according to Arai, 2004; Fant, 1970). It states that the harmonically-rich vocal-cord oscillations are
independently shaped by the vocal tract resonances, which act as �lters that endow the various
vowels with their characteristic timbre. According to the myoelastic-aerodynamic theory, which
complements the source-�lter theory, sound is generated by aerodynamic energy that produces a jet
air�ow from the lungs and through the larynx, where it is converted to acoustic oscillations by the
vibrating vocal cords (van den Berg, 1958).

Detailed mechanical and acoustical models have been further introduced to describe speech pro-
duction acoustics. Stevens (1998, pp. 55�126) listed four speci�c mechanisms for sound production
in speech�two of them were mentioned with respect to musical instruments�vocal-cord periodic
modulations (similar to musical reeds), turbulence generation variations close to constrictions, sud-
den release of air from a pressurized cavity to the vocal tract (a short transient that is part of
stop consonant production), and inward air suction using the tongue for constriction. The vocal
cavities themselves are typically modeled as one-dimensional pipes with hard walls, where only plane
waves can propagate. The associated �ltering by the cavities is modeled as time-invariant linear
functions, e�ective per speci�c articulation con�guration. This con�guration is determined by the
size of the compartments (e.g, pharynx and the mouth cavity) and how they are connected among
each other and to the nasal cavities. The speci�c resonances of the vocal cavities (formants) shape
the rich harmonic spectrum coming from the larynx. The acoustic coupling between the di�erent
cavities, the e�ect of end-corrections, realistic wall properties, and perturbations to the cross-section
of the pipes�all shift the resonances away from the natural harmonic series, although often not
dramatically (Stevens, 1998, pp. 127�202).

Vocalizations of most mammals and birds are largely based on organs similar to humans, to
the extent that the myoelastic-aerodynamic and source-�lter theories can be applied just as well as
they are for humans (Fitch and Suthers, 2016). There are also many exceptions, such as songbirds
and toothed whales, which have a dual noise generation capability in their larynx/syrinx, and other
animals that use highly nonlinear and even chaotic generation of sounds using the same mechanics
(Fitch and Suthers, 2016; Herbst, 2016). Simpler animals like some anthropods can mechanically
rub body parts to produce sounds (stridulation), whereas others like certain species of �sh may
not even be capable of producing sound.

The standard source-�lter theoretical view of speech production has been challenged over the last
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decades, with the growing understanding that the transient nature of real speech signals cannot be
satisfactorily accounted for by time-invariant linear �lters (Teager and Teager, 1990). Nonlinear jet
air�ow speeds that were measured in the vocal tract suggested that vortices (turbulence) signi�cantly
contribute to the total speech energy, which entails a mechanism that is governed by the �uid-
mechanics and not only by the acoustical dynamics (Teager and Teager, 1990; Barney et al., 1999;
Shadle et al., 1999; Sharma et al., 2017).

3.3.3 Complex source modulation

The understanding of how the sound produced by acoustic sources is shaped would be incomplete
without considering the role of modulation, which is known to be rife in natural sound sources, both
as amplitude and as frequency modulations (Attias and Schreiner, 1997; Singh and Theunissen,
2003).

An important example of these e�ects has come to recent attention in speech modeling. In
practical modeling of recorded speech signals, the inherent transience of real-world vocalizations is
not adequately captured by any of the models mentioned in �3.3.2 (Sharma et al., 2017). From the
signal perspective, animal (including human) vocalizations can be reduced to fundamental building
blocks that vary dynamically: amplitude modulation, downward or upward glides (frequency modu-
lation), broadband noise, constant (periodic) frequencies, and (near) pure tones (Klug and Grothe,
2010). Moody and Stebbins (1989) noted that when animals frequency-modulate their calls, it is
always done gradually as a sweep and never in discrete steps. Species-speci�c vocalization systems
have been shown to be matched by auditory systems that can be speci�cally tuned to receive the
acoustic building blocks relevant to this particular vocalization, and thereby achieve processing ef-
�ciency (Casseday and Covey, 1996; Klug and Grothe, 2010; Theunissen and Elie, 2014). These
sonic elements, at least in speech, are most e�ectively analyzed using time-domain methods that can
extract the instantaneous envelope and frequency of the signals and avoid smearing e�ects that are
involved in strictly frequency-domain methods (Huang et al., 2009; Sharma et al., 2017). Therefore,
practical analysis of realistic speech applies somewhat generic solutions of time-frequency techniques,
which decompose broadband signals to di�erent modes that change in time�modes that are dy-
namically amplitude- and frequency-modulated (AM-FM). The superposition of all modes yields a
representation of the complete broadband signal s(t) (Sharma et al., 2017)

ŝ(t) =
N∑

n=1

an(t) cos

[
ωnt+

∫ t

0

mn(τ)dτ + φn

]
(3.25)

Here the speech signal is estimated as a multi-component signal of N modes, each of which has
its own time-varying envelope a(t) and frequency m(t) and initial phase φn. Ideally, the modes
correspond to the harmonics and the formants of speech that are seen also in the static models (e.g.,
source-�lter). In reality, determining the center frequencies ωn is the biggest challenge and di�erent
algorithms have been proposed to achieve it in the time-domain without resorting to Fourier analysis.
Depending on the precise algorithm and signal, there may be a residual signal e(t) = s(t) − ŝ(t)
that is not fully captured by the �nite number of modes. However, in theory, the decomposition in
Eq. 3.25 overcomes the situation caused by harmonic analysis that generates an in�nite series of
frequencies for every abrupt discontinuity in the signal31.

31The abrupt discontinuity can be modeled using a step function that modulates the amplitude of the signal.
Using the standard Fourier-transform analysis, the step function u(t) has a hyperbolic continuous spectrum with an
in�nite support: F [u(t)] = 1

iω + πδ(ω).
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We recognize Eq. 3.25 as a summation of waves of the form of Eq. 3.13, which has time-
and space- dependent amplitude and phase functions. While we did not deal directly with time-
dependent amplitude in the discussion about dispersion above, it can be incorporated into the same
framework if necessary by allowing the wavenumber k(ω) to be complex. A case will be made later
(� 6.6.1) for employing a complex envelope as a catch-all modulation domain part of an arbitrary
narrowband signal. This is a convenience that bundles the slowly varying AM and FM together
along with a high-frequency and constant carrier. It is clear that the AM-FM modeling of speech
can be applied using complex envelopes for the modes. In fact, the same procedure can be made to
correspond to the generic sum of normal modes of Eq. 3.24, as long as the amplitude anml is made
time-dependent in addition to being complex, anml(t). Of course, at the signal level, the factors
that include spatial dependencies in Eq. 3.24 can be replaced by constants. The same goes for Eq.
3.25, which can be expressed using a complex envelope that includes both AM and FM.

There are several mechanisms that can constitute complex modulation in acoustic systems. The
inclusion of these mechanisms in the complex envelope is a mathematical convenience, which does
not change the physical signal. Three general categories of complex modulation are considered
below. Note that in the hearing literature the category of spectral modulation is often invoked
as one-half of the important spectrotemporal modulation. Spectral modulations can be the result
of re�ections that cause interference between the incident and re�ected sounds. They are only
mentioned in passing in �3.4.3.

Explicit forced modulation

The most obvious modulation is also unequivocally presented as such in literature. It is caused
by setting the oscillator into vibration using a periodic external force. For example, according to
the source-�lter theory, the vocal folds modulate the air�ow from the lungs at the fundamental
frequency (Stevens, 1998). Additionally, the outgoing sound is temporally modulated by the tongue
and lips, which also spectrally modulate the sound along with the other cavities in the vocal tract
(Plomp, 1983). At much lower frequencies, the speech modulation spectrum is widely used in
research, mostly referring to the natural amplitude modulation it has, which peaks at around 3�4
Hz (Steeneken and Houtgast, 1983) and is considerably diminished above 64 Hz (Drullman et al.,
1994a,b; Singh and Theunissen, 2003). A vibrato (frequency modulation) e�ect in singing is caused
by a periodic modulation of the fundamental frequency (Sundberg, 1995), similarly to vibrato in
string instruments (Fletcher and Rossing, 1998, pp. 317�318). Also, string instruments (especially
the viola and cello) are susceptible to the dreaded �wolf tone�, which is amplitude modulation caused
by periodic low-impedance coupling between the string note and the normal mode of the instrument
body (Fletcher and Rossing, 1998, pp. 312�313 and Chaigne and Kergomard, 2016, p. 629).
Vibraphone notes can be amplitude-modulated (tremolo) upon periodically opening and closing its
resonators using an electric motor (Fletcher and Rossing, 1998, pp. 638�639). As modulation that
is not necessarily periodic, siren and guitar string pitch bending were given as realistic examples for
frequency modulation in Schnupp et al. (2011, pp. 22 and 31), as are a few of the characteristic
sound e�ects produced by the �oating bridge and drum-head assembly of the banjo (Politzer, 2015).
Finally, echolocating bats use frequency-modulated chirps as their main targeting signal.

Implicit modulation

Several types of signals that are sometimes seen as stationary are amenable to reformulation as
modulated sounds.

The case of mode beating�the interference between two normal modes that are close in
frequency�is somewhat problematic. Beating unmistakably behaves as amplitude modulation, but
it lacks a physical carrier (Fletcher and Rossing, 1998, pp. 10 and 105). The standard mathematical
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solution is to set the carrier at the average frequency of the two mode frequencies with the di�erence
frequency as the modulator (Eq. 3.9), although this description may not correspond to how the
wave is generated at the source.

Constant tones are another common case. By making the carrier constant and assigning all the
amplitude changes to the envelope, we obtain a very broad category of implicit modulations. They
are typically overlooked or implicitly attributed to the carrier, despite the inherent ambiguity in this,
as they can just as well belong to the envelope (see �6.6.1). A pure carrier is a pure tone�it has no
beginning and no end�a precondition for keeping its frequency �xed. Therefore, sound onset and
o�set should count as a segment of a slow and long amplitude-modulated envelope, which includes
the particular ramps associated with the onset and o�set.

Nonperiodic changes in amplitude or frequency are also modulations, but with more complex
envelope spectra that are not strictly sinusoidal or linear. In his landmark book about the source-�lter
theory, Fant (1970, p. 18) commented (emphasis in original): �The terms harmonic or periodic
are not adequate, from a strictly physical standpoint. Because of the variations always present it
would be more appropriate to speak of voiced sound as quasi-periodic.�

By including phase and frequency modulation e�ects, this category can be further expanded
to all forces that cause some change to the otherwise static sound. For example, realistic vowel
sounds contain fundamental frequency modulations (glides) that a�ect its formants before the vowel
becomes static (Hillenbrand, 2013).

Transient response

Oscillators require a source of energy in order to vibrate. Sometimes it is provided from the outside
by a distinctly separate object, and sometimes from within�in complex sources that have additional
moving parts or internal sources of energy (e.g., a pendulum clock, a vocalizing animal, a �zzing
chemical reaction). The mass, momentum, and material, as well as the area and duration of coupling
between the force and the sounding mechanism a�ect the timbre of sound, often dramatically.
Speci�cally when animal vocalizations (and human speech) are produced, they require coordinated
muscle action, which may be periodic, impulsive, gradual, etc. and can instantaneously depend on
numerous mechanical and aerodynamic factors in the system.

The solution to the inhomogeneous wave equation, which describes the forced source motion,
contains two parts�a transient solution and a steady-state solution. The transient solution exhibits
the normal modes of the oscillator, which inevitably decay. Each mode can be mathematically
expressed as the product of a constant carrier and a decaying exponential envelope. The steady-
state solution is caused by the external force. An external impulse reveals only the transient response,
but all other forces produce more complex responses, which may involve dynamic frequency changes
that can be incorporated into the complex envelope.

Another indirect modulation can take place if the source is moving while producing sound,
which can create subtle frequency shifts through the Doppler e�ect (Morse and Ingard, 1968, pp.
699�700):

f ′ =
c+ v

λ
(3.26)

where f ′ is the Doppler-shifted frequency for an object moving at speed v producing sound with
wavelength λ. Therefore, relative acceleration of the source or receiver can cause e�ective frequency
modulation to a listener at rest. For example, an observer at rest, listening to a vocalization centered
at 1000 Hz of an animal moving at an instantaneous velocity of 5 km/h will experience a maximum
frequency shift of about 4 Hz. The modulatory e�ect on the spectrum and other room acoustic
parameters that were produced in playing orchestral musical instruments, expressively (in motion),
is documented by Ackermann et al. (2024).
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3.4 The acoustic environment

The acoustic environment contains the medium for the radiated waves from the source. Given an
arbitrary acoustic source, we would like to know how its sound is transformed by the time it reaches
to a listener at a distance. As in the previous section, this review is highly selective and emphasizes
acoustical e�ects that have received less attention in the context of hearing. The main focus is
transient e�ects and how they distort the acoustic envelope through propagation in air, re�ections,
and various room acoustic e�ects32.

3.4.1 Radiation patterns

Vibrating objects of arbitrary geometrical shapes can produce complex radiation patterns in the
medium, which determine the spatial distribution of the acoustic �eld (both pressure and velocity)
away from the object (Morse and Ingard, 1968, pp. 306�394). In near-�eld, the radiation pattern
may vary signi�cantly as a function of position, especially if the source shape is not simple (i.e., if
it does not possess any symmetry). Solid sources produce normal modes that vibrate with di�erent
amplitudes in di�erent parts of the object geometry. Additionally, if the object is modulated by
an external force, then their point of contact generally causes some normal modes to vibrate more
than others. As most sources are inherently dispersive (�3.3.1), di�erent elements of their external
surface area tend to vibrate with slightly di�erent phase, which varies as a function of frequency.
Therefore, sources with multiple oscillating modes tend to sound di�erent from di�erent positions
around them.

In far�eld, the complexity of the acoustical radiation pattern may be reduced by approximating
the sources to point size, or to other theoretically useful types of sources (e.g., dipole, spherical, line).
This approximation dispenses with the precise object shape and replaces it with simpler and more
symmetrical radiation patterns, compared to realistic conditions, in which arbitrary three-dimensional
objects radiate asymmetrically. There is a practical limit to the usefulness of such approximations, as
they tend to get too complex to derive much intuition from when higher-order terms are introduced
(i.e., quadrapoles and higher-order terms than dipole). When this happens, the power spectrum of
the source can be used alongside statistical tools to model the source radiation (Morse and Ingard,
1968, pp. 329�332).

Regardless of the speci�c geometry and modeling approach, many complex sound �elds exhibit
approximate plane wave behavior far from the source (i.e., when kr ≫ 1; see Table 3.1).

3.4.2 Acoustic information propagation in air

All material media exhibit acoustic dispersion and absorption, which a�ect the radiated waves in the
medium and accumulates over distance (Brillouin, 1960). Absorption is responsible for dissipating
acoustic energy through three primary mechanisms: viscosity, thermal conduction, and relaxation
phenomena (causing molecular vibrations, rotations, ionization, or short-range ordering; Kinsler

32A few audio demos that demonstrate the aggregate e�ect of some of the phenomena that are discussed in this
section are provided in /Section 3.4 - Radiation, dispersion, reflection, and reverberation/. The
demos bring �ve complex scenes that were recorded in-situ from a far distance (10�1400 m), and thus demonstrate
the e�ects of dispersion and re�ections in complex environments and how they interact with the source type. Un-
fortunately, the recordings were all made using a mobile phone and are therefore of poor quality and in two far-�eld
recordings of relatively low signal-to-noise ratio. The low-frequency content below 100-300 Hz was low-pass �ltered
to eliminate wind, vehicle, and handling noises. Nevertheless, the recordings may still serve as examples for how
sound becomes distorted and decohered over distance�something listeners are all familiar with, but is rarely dealt
with directly as stimuli in hearing research.



Adam Weisser 69

Sound Light

Field variables pressure p, velocity u electric �eld E, magnetic �eld H

Wave speed c = 1√
ρκ c = 1√
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ρ
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∂2H
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Far-�eld monopole (point source)

Scalar �eld p = − iρck
4πr Sωe
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Intensity (energy
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Ir = |p|2
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4π
1
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Far-�eld dipole

Scalar �eld p = −ρck
2Da cos θ
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µ
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Table 3.1: Comparison between the acoustic and electromagnetic analogous wave relations
that are most relevant to hearing and vision, due to scalar �elds and plane waves. Vector
variables are printed in boldface. E is the electric �eld, H is the magnetic �eld, and De

is the electromagnetic dipole strength. Sω is the acoustic point source strength and Da is
the acoustic dipole strength. The medium constants used are the �uid density ρ, the adia-
batic compressibility of the �uid κ, the dielectric constant or permittivity ϵ, and the magnetic
permeability µ, where in vacuum they are designated as ϵ0 and µ0. The intensity vector in
electromagnetic theory is referred to as Poynting vector S, but is called irradiance in radiom-
etry. The standard medium is air for both sound and light, but in the case of light the values
of vacuum are usually used instead as they are close enough to air. Because electromagnetic
monopoles cannot be time-dependent (and there are no known magnetic monopoles), the
simplest system that is directly comparable is a dipole in the far-�eld approximation. Natu-
rally, its expressions are close to the acoustic dipole, which is less commonly used than the
point source. The important thing to notice is that all source types have the same inverse-
law dependence on distance in far-�eld (spherical divergence), up to scale constants. The
acoustic expressions are taken from Morse and Ingard (1968, pp. 243, 258, 311�312) and the
electromagnetic expressions from Born et al. (2003, pp. 15, 24�25) and Jackson (1999, pp.
410�413). Note that electromagnetic theory has multiple standardized normalizations, which
means that similar equations often appear with slightly di�erent coe�cients, depending on
the choice of units. See Jackson (1999, pp. 775�784) for further details. †In the context of
acoustics, the homogenous wave equation applies both to the linearized elastic wave equation
in solids and to the linearized acoustic wave equation in �uids, which are correct only for small
amplitudes (Whitham, 1999, pp. 4�5). For a rigorous comparison of scalar and vector elec-
tromagnetic and acoustic potentials and �elds (particularly geared for quantum mechanics),
see Burns et al. (2020).
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et al., 1999, pp. 210�241). At low frequencies, most mechanisms produce absorption that is
quadratic in frequency, but this dependence can change as a function of the relaxation frequency
of the gas, which in turn depends on temperature (and humidity, in the case of air). Absorption is
associated with broadening of pulses on top of the spherical divergence attenuation of the wave (i.e.,
the drop in intensity as 1/r2; see Table 3.1). In realistic conditions, though, the exact power-law of
the frequency dependence may have to be determined empirically, as it can be a fractional power
that is smaller than two (Treeby and Cox, 2010).

Absorption is always accompanied by dispersion, which causes pulse broadening as well as phase
distortion that can lead to chirping. Unlike absorption, dispersion does not result in energy loss.
The combined e�ect of dispersion and absorption is modeled using a complex wavenumber (e.g.,
Markham et al., 1951)

k(ω) = kr(ω) + iki(ω) (3.27)

where the real part kr(ω) corresponds to dispersion and the imaginary part ki(ω) to absorption.
Importantly, the absorption and dispersion of k are not independent and the two form a Hilbert-
transform pair. This is a result of the Kramers-Kronig relations, which connect the real and
imaginary parts of functions in causal systems (Kramers, 1927; Kronig, 1926; Toll, 1956; Nussenzveig,
1972)33.

The magnitude of the associated absorption and dispersion of the audio range in normal atmo-
spheric conditions is small and is typically neglected in laboratory settings, except for large spaces or
distances and high frequencies (Vigran, 2009, pp. 122�124). The most common analyses examine
the e�ects of propagation of pure tones or broadband noise. Both types are stationary signals that
do not provide much insight about the possible e�ects of the atmosphere on temporal modulation,
which is a necessary element in acoustic communication34. A more informative signal for this purpose
is the pulse, which is transient and can be designed as narrowband (long duration) or broadband
(short duration). A narrowband pulse moves in group velocity centered around its carrier frequency,
whereas a broadband pulse (like a delta function) re�ects more clearly the uniformity of the group
velocity function in the medium, or the lack thereof. In any case, pulse propagation depends on
the extent of the variations in the group velocity function, which are encapsulated in the dispersive
properties of the medium. As the pulse shape is determined by the alignment of the phases of its
spectral components, dispersion generally causes pulse deformation in propagation, to a degree that
is proportional to the distance traversed (Va��nshte��n, 1976 and �3.2.2).

Natural weather conditions entail �uctuations in temperature, density, medium velocity and
scattering properties that make the atmosphere inhomogeneous and further a�ects the sound prop-
agation. For example, it has been long known that sound propagation in fog causes attenuation in
the outdoors (Tyndall, 1874; Cole III and Dobbins, 1970)35 and also faster decay in closed rooms
�lled with smoke (Knudsen et al., 1948). Another important example is turbulent atmosphere that

33The Kramers-Kronig relations were validated for a range of problems in acoustics (e.g., Ginzberg, 1955; O'Donnell
et al., 1978; Waters et al., 2005; Álvarez and Kuc, 2008). In their polar representation formulation, these relations can
be shown to be analogous to the concept of minimum-phase �lters in signal processing. Any linear, time-invariant
�lter that is stable and causal with zeros and poles on the left half of the s-plane is minimum-phase, which entails
the minimization of its group delay. It also means that its phase response is uniquely determined by its magnitude
response and vice-versa, up to a constant (Manolakis et al., 2005, pp. 54�61; Hartmann and Candy, 2014, p. 533;
Toll, 1956). Both responses can be derived from one another using the Hilbert transform. Non-minimum-phase �lters
can be expressed as the combination of a minimum-phase and an all-pass �lter�a �lter that a�ects only the phase.
Thus, the e�ect of absorption is roughly analogous to the magnitude response and dispersion to the phase response in
�lter theory. In audio �lters, however, signals and operations are generally expressed as time and frequency functions,
while keeping the spatial dependency implicit, whereas the corresponding wave functions involve both spatial and
temporal coordinates in physical systems.

34It can be seen in Figures 3.1 and 3.2 how pure tones are not a�ected by dispersion directly.
35The earliest published observations about this topic were by R. Derham in 1708, according to Tyndall (1874).
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Figure 3.3: Sound propagation in air at 20◦C and 50 % humidity, based on Álvarez and Kuc
(2008). Left: Approximate group velocity is based on phase velocity of 343.21 m/s. Right:
The absolute value of the (negative) dispersion and (positive) absorption curvatures (i.e.,
their quadratic frequency dependence). The dispersion was derived numerically from Eq. 9
in Álvarez and Kuc (2008). However, the same could not be done for the absorption of their
Eq. 8 due to multiple sign reversals, but the trend was closely matched by dividing Eq. 8 by
ω2 to obtain the approximate absorption curvature.

can be formed in windy conditions, which causes both pulse (temporal) and spectral broadening
(Havelock et al., 1998). It is possible to get a handle on the magnitude of absorptive e�ects by
evaluating the excess attenuation of the atmospheric absorption, which is estimated after sub-
tracting the e�ect of spherical divergence loss of the signal (Wiener and Keast, 1959; Morton, 1975;
Lengagne and Slater, 2002). The extent of this e�ect can vary signi�cantly, as can be gathered
from measurements of frog calls in a forest after rain (Penna et al., 2012), which revealed signi�cant
excess attenuation, while penguin calls in the dry and cold plains of Antarctica followed spherical
divergence with no excess attenuation (Robisson, 1991) .

In this work we will be primarily interested in the quadratic frequency dependence (the curvature)
of the dispersion (the group-velocity dispersion; see �10), whose small values are shown in Figure 3.3
for di�erent distances in normal atmospheric conditions. Absorption e�ects are not studied directly
in this work, but their potential role will be hypothesized at some points.

3.4.3 Re�ections

Apart from birds and bats in �ight far from the ground, or animals in the depth of the ocean far from
the ocean �oor and water surface, all animal communication sounds are inevitably re�ected from
nearby surfaces�soil, rock, vegetation, or water. Theoretical re�ection analysis ranges from simple
to highly complex, depending on the amount of assumptions made about the re�ecting boundary.
As in propagation problems, much of the literature is concerned with pure tones and broadband
noise, which model the e�ects of re�ection on static amplitude or intensity, phase, and re�ected
angle. However, we continue to emphasize the e�ect of re�ections on pulses and other transient
signals that are more relevant for communication.

Several theoretical treatments of the re�ection e�ects on sound pulses are found in literature.
Pulses of arbitrary shape can be computed by convolving the impulse response function with a pulse
of arbitrary shape (Morse and Ingard, 1968, pp. 259�270). The total �eld is a superposition of the
incident pulse and a re�ected pulse, which forms a wake of negative pressure. Depending on the
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delay between the incident and re�ected waves, the two may interfere at the point in space and
time of measurement and produce a deformed pulse. Another treatment of acoustic pulse re�ection
(and transmission) between two homogenous media was provided in Brekhovskikh and Godin (1990,
pp. 113-125), where the re�ected pulse is shown to be composed of a superposition of the incident
pulse of and another pulse that is proportional to its Hilbert transform. In general, the re�ection of
a pulse by a realistic surface (of a �nite acoustic impedance) causes deformation of the pulse shape.
Hence, re�ection can distort both spectral and temporal envelope, in a similar manner to dispersion
(Brekhovskikh and Godin, 1990, p. 123). Most environments also contain objects of dimensions
of the same order of magnitude as the sound wavelength that cause wave scattering, which is even
more complex than simple re�ection from large surfaces (Morse and Ingard, 1968, pp. 400�466).
For a geometrical acoustical treatment of sound pulse re�ection, see also Friedlander (1958).

Pulse deformation has been demonstrated in several measurements in-situ. For soil re�ection,
most measurements and applications rely on steady-state signals to evaluate the re�ection proper-
ties, but in some cases pulses were used instead, which revealed severe pulse shape deformations
following re�ection (Don and Cramond, 1985; Cramond and Don, 1984). Re�ection characteristics
are sometimes known to be a�ected by surface waves at low heights over the ground (Daigle et al.,
1996). In outdoor sound propagation, the acoustic impedance, porosity, and multilayeredness of
di�erent soils (e.g, grassland, sand, forest �oor, porous asphalt) have been evaluated in several
studies, and results were reproduced using di�erent models of varying complexity (Attenborough
et al., 2011). In underwater measurements, Cron and Nuttall (1965) showed that Gaussian and
rectangular pulse-modulated pure tones become deformed as a result of re�ections at angles greater
than the critical angle (de�ned by the ratio of speeds of sound in the two media, water and ocean
�oor), when the pulse was relatively broad.

3.4.4 Room acoustics

An acoustic source radiating in a closed space produces numerous re�ections between its boundaries.
Other objects in the enclosure give rise to additional scattering that can be substantial. Also, in very
large spaces, the atmospheric e�ects on propagation may be observable, especially as such e�ects
accumulate with successive re�ections. Therefore, depending on the complexity of the space, its
dimensions, and its materials, we can expect that re�ected pulses and other temporally modulated
sounds may become severely deformed the farther they are in time and space from the sound at
the source. Taking the sound �eld as a whole, it becomes gradually more di�use the farther it
propagates from the source and the longer it takes it to die out due to absorption.

Steady-state response

Two prominent approaches for the analysis of sound propagation in rooms exist in the literature�
explicit wave equation solution for particular boundary conditions in one extreme, and a geometrical
statistical approach in the other.

The �rst approach involves obtaining a closed-form solution of the wave equation with the
boundary conditions of the enclosure, which yields a series of normal modes in three-dimensions
(Morse and Ingard, 1968, pp. 554�576). The energy of any acoustic wave that propagates in
the room has to be carried by its normal modes. This approach is insightful for large wavelengths
(low frequencies) that are comparable with the dimensions of the enclosure. Solutions are generally
interpreted in the frequency domain and relate to steady-state resonances, where each mode has its
characteristic time constant for delay. At high frequencies, the increasingly high number of modes
per unit frequency accounts for the erratic frequency response that rooms typically have (Lubman,
1968).
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Geometrical acoustics, the second approach, employs idealized �sound rays� of negligible
wavelength compared to the surrounding enclosure dimensions (Morse and Ingard, 1968, pp. 576�
599; Kuttru�, 2017, pp. 81�102). A necessary condition for this to work is that the normal-mode
density36 is su�ciently high, so that an arbitrary frequency component can be carried by several
normal modes simultaneously. This condition is generally ful�lled for su�ciently high frequencies
(see �8.4.2).

The ability to use statistical methods opens the door for a practical de�nition of reverberation�
the sound made by the ensemble of all the re�ections. It is quanti�ed by the reverberation time,
which is de�ned as the duration it takes for a steady-state sound source that is switched o� to
decay by 60 dB (see � 8.4.2). Its value depends on the room volume, the surface area of its
boundaries, and their corresponding frequency-dependent absorption. While reverberation time is a
temporal measure, it does not give su�cient information to infer the transient properties of ongoing
nonstationary sounds.

It is often more practical to measure the room impulse response and extract di�erent param-
eters from it, without having to make too many assumptions about the analytical problem (Kuttru�,
2017, pp. 193�218). This facilitates the separation of the direct and reverberant regions of the
sound �eld. In the direct �eld region (measured by its distance from the source), the signal from
the source is relatively intact and su�ers the least deformation, as its level is higher than the �eld
generated by the re�ections�the reverberant �eld. The reverberant portion of the impulse re-
sponse is typically separated to early re�ections, which may be individually distinguishable as echoes,
and to late re�ections, which asymptotically behave as a statistical ensemble that is di�use�it has
a random phase function (Kuttru�, 2017, pp. 86�90).

Transient response

There are relatively few clear examples of temporal e�ects in room acoustics, beyond the obvious
reverberant decay or distinct echoes in large spaces. Flutter echo may be the most familiar
example�periodic re�ections between parallel walls of long structures (like corridors) that are slow
enough (longer period than about 25 ms) to be heard as temporal modulations�usually of low-
frequency sounds (Kuttru�, 2017, pp. 90 and 167). More obscure e�ects include the chirping echo
caused by di�raction from the stairs of the Mayan pyramid at Chichén Itzá in Mexico (Lubman,
1998; Declercq et al., 2004), or the sweeping echo following an impulse in some rectangular rooms
(Kiyohara et al., 2002).

Note that shorter re�ection periods than 20�25 ms can produce sound coloration (Atal et al.,
1962), which is perceived spectrally rather than temporally (e.g., Rubak, 2004). In general, the
interference between incident and delayed (re�ected) wavefronts gives rise to spectral modulation,
which can be measured with broadband sounds, and was demonstrated in a handful of natural
sources in unspeci�ed acoustic conditions (Singh and Theunissen, 2003), as well as for read speech
(Elliott and Theunissen, 2009). The resultant interference, however, is never completely destructive
in realistic conditions, due to the partial coherence between the incident and re�ected waves (�8).
Sinusoidal spectral modulation of the broadband sound are usually referred to as ripples in the
auditory literature.

More mundane transient room acoustic e�ects exist as well. At low frequencies, the normal-mode
density in rooms is relatively small, which can make speci�c modes stand out. For example, Knudsen
(1932) demonstrated that even with a pure tone source in a small lightly-damped rectangular room

36Normal-mode density is a statistical measure that quanti�es the number of normal modes in a structure per
unit frequency. In rooms, the lowest normal mode is determined by its largest dimension. With higher frequencies,
there are increasingly more modes per unit frequency, so at very high frequencies, there are no �holes� left as arbitrary
frequencies are carried by numerous modes.
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of about 17 m3, low-frequency tones (around 100 Hz) changed their frequency during the decay,
when they did not coincide with the frequencies of the normal modes of the room. Additionally, if
the tone frequency fell between two modes, it exhibited noticeable beating, as its energy was shared
between the modes. Similar phase and amplitude modulations obtained in tone decay with two,
three, and four-wall structures (Berman, 1975).

In general, exact solutions of the room boundary condition problem lose their appeal at high
frequencies, where numerous normal modes exist. Morse (1948, p. 393) suggested that for a pulse
transmitted in a room to retain its shape, a large number of modes (>10) has to overlap with a
pulse carrier. In contrast, an overlap of three modes only is considered su�cient to ensure a smooth
response of steady-state sounds (Schroeder, 1996). As signals are generally not steady-state and
can be highly variable, the realistic e�ect of re�ections and reverberation can be more complex when
it comes to transient signals.

In the reverberant �eld, the phase response of the room appears to be inconsequential, since
listeners are able to detect phase di�erences only very close to the source and where the fundamental
frequency is low, as measured with various broadband steady-state signals (Kuttru�, 1991; see also
Traer and McDermott, 2016). Nevertheless, as is seen in �3.3.2, phase information is also necessary
to appropriately reconstruct speech and other sound sources. Reverberation by its nature randomizes
the signal phase when it is su�ciently far away from the source in time and space. The e�ect it has
on transient sound may be appreciated from the modeling of the response to short Gabor pulses in
two room geometries, which was found to be signi�cantly closer to measurement when the complex
acoustic impedance of the walls was included in the model (Suh and Nelson, 1999). While the basis
of that model was geometrical, the complex impedance could propagate the (non-geometrical) e�ect
of interference in successive re�ections. In another study, it was demonstrated that the instantaneous
frequency and amplitude of linear and sinusoidal FM signals become distorted in the room, when the
involved modulation is fast relative to the inverse of the reverberation time (Rutkowski and Ozimek,
1997) .

With increasing reverberation, the sound envelope decays more slowly and can energetically mask
subsequent sounds, if new sounds from the source are emitted before the decaying sound subsides.
This e�ect is captured by the modulation transfer function (MTF) concept, which was imported
into acoustics from optics, and has been used as a proxy to estimate envelope smearing e�ects
(Houtgast and Steeneken, 1973, 1985). It is measured by applying sinusoidal amplitude modulation
to bandlimited continuous noise bursts. The relative di�erence between the smeared output and the
clean input can be averaged over all center frequencies for each modulation frequency band, typically
of the range 0.25�16 Hz. In general, longer reverberation times decrease the received modulation
depth (Schroeder, 1981), which entails a decrease in audible contrast between the high and low
points of the envelope (�6.4.1).

An analogous measurement to the MTF in the transmission of sinusoidally frequency-modulated
narrow noise bands (i.e., the center frequency of the noise band was frequency-modulated) was
demonstrated by Rutkowski (1996). It was found that the frequency deviation of the modulation�
analogous to modulation depth in AM�tends to decrease with higher modulation frequency and
reverberation time, just like the MTF. However, in some carrier bands, the FM MTF was not
monotonically decreasing and showed enhanced transmission.

It should be mentioned that the MTF, reverberation, and other room-acoustic principles do not
apply only to closed spaces. For instance, sound propagation in a �at deciduous forest introduced
signi�cant amplitude modulation, attenuation, and reverberation in both pure and amplitude mod-
ulated tones (Richards and Wiley, 1980; see also, Padgham, 2004). It was hypothesized to have
an impact on animal communication in these habitats, as vocalizations may have to be adapted to
spectral windows where the information-distorting acoustics is minimal.
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3.5 Transitioning from waves to stimuli

The previous sections made the case for high complexity of realistic acoustic sources and the various
transformations that can befall them on the way to the receiver. In terms of analysis, it paints a
somewhat bleak picture of acoustic waves that are not only complex right at their origin, but may
also become hopelessly deformed in propagation. Such sources are a far cry from the popular and
mathematically convenient pure and complex tones, and their environments are nothing like the
safe acoustic spaces o�ered by the anechoic chamber or the audiometric booth. However, it is also
evident that the direct sound path from the source to the receiver su�ers the least deformation
compared to longer acoustic paths due to large distances or multiple re�ections. In closed spaces,
where the direct and re�ected �elds are superimposed, there are additional issues of interference and
signal-to-reverberation ratio, which make the direct �eld even more precarious than in the outdoors,
where there are fewer re�ections, typically.

As was argued in �1.3, hearing is primarily temporal, whereas many of the complications of
realistic sources and �elds manifest spatially. This means that the spatial dependence between two
points can be generally reduced to a transfer function, while leaving any temporal e�ects explicit, as is
customary in auditory signal processing37. The di�erence is that we advocate for using instantaneous
quantities (phase, frequency, and amplitude) throughout the signal representation, in order to be able
to factor in all kinds of modulations, either inherent to the sound or as a result of its propagation.

We saw that a practical method�maybe the most practical method�to represent a complex
signal like speech is by decomposing it to a sum of carriers with slowly-varying envelopes, which
account for instantaneous changes both in amplitude and in frequency (if the envelope is allowed
to be complex). We also know that the room acoustics and reverberation interact with the modu-
lation domain, which should entail modulation deformation of some sort as well (usually a low-pass
�ltering of modulation frequencies). At the same time, the carrier domain becomes broader with
accumulating dispersion and re�ections, which leads to an overall loss of phase structure of the
signal. However, even after transmission, the signal may still be representable as a component of
a sum with slowly-varying complex envelope. In the direct �eld, the phase function and the exact
frequency matter. In the reverberant �eld, the phase does not matter, and the sinusoidal carrier
may have to be replaced with a stochastic carrier. In reality, neither the direct nor the reverberant
�elds accurately describe the acoustic �eld, which may be better understood as a mixture of both
�eld types.

The distinction between the direct and reverberant �elds has far-reaching implications for sound
detection as is performed by hearing. Generally, the direct �eld provides a deterministic phase
transfer function. To be able to make full use of the phase information, communication theory
requires precise determination of the carrier frequency before demodulation (�5.3.1). Typically, it is
achieved using phase-locking that synchronizes to the carrier. In reverberant �elds and in the direct
�elds of random sources, the phase is random and demodulation can be applied much more simply
to the intensity envelope only�no longer requiring phase-locking (which is anyway impossible when
the phase is truly random). Both detection methods are useful for somewhat di�erent purposes. We
will later refer to the direct �eld as coherent, the reverberant as incoherent, and their corresponding
detections as coherent and noncoherent. The process in which the phase of the direct �eld becomes
randomized through re�ections and reverberation will be called decoherence. These concepts are
central in this work and will be explored from di�erent perspectives along the subsequent chapters.

37In this sense, an oscillator with a single degree of freedom is a more suitable physical model for the acoustic (or
audio) signal than the acoustic wave, which is continuous and comprises multiple degrees of freedom. The former is
generally modeled using ordinary di�erential equations (e.g., the harmonic oscillator), whereas the latter with partial
di�erential equations. However, the generic solutions of these equations are almost the same, except for the speci�c
physical constants that enter the phase terms in both cases and exclude the wavenumber in the oscillator case.
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