
Chapter 10

The paratonal equation

10.1 Background

Up until now, various topics from a range of �elds have been introduced that are deemed critical
for the understanding of the temporal imaging theory, which we shall start presenting in this chap-
ter. The concepts that were presented earlier will be used throughout this work�some more than
others�and to a large degree serve to motivate it.

The basis for the temporal imaging theory is a solution to the scalar Helmholtz wave equation
that was developed in the late 1960s, but has never been used in acoustics. There are two features of
this solution that make it particularly attractive in hearing. First, it deals with the complex envelope
of the signal and not with the carrier, which is immediately useful in problems of modulation, where
nonstationarity is key. It therefore dodges the static nature of classical Fourier analysis that has
us infer modulation indirectly from its spectrum, or apply time-windows on otherwise in�nitely long
transforms (Blinchiko� and Zverev, 2001, pp. 383�395). Second, it is mathematically analogous to
the paraxial equation for light. This means that it should be possible to devise an analogous imaging
system in sound by combining dispersive elements, in analogy to spatial optics, where di�raction is
used instead. Both these aspects have far-reaching implications to hearing theory�some of which
will be explored in the �nal chapters of this work.

The temporal paraxial equation was derived by the nonlinear-optics physicist Serge�i Aleksan-
drovich Akhmanov and colleagues in Akhmanov et al. (1968, 1969)93. It was done in the context of
a comprehensive space-time equivalence theory, which exploits mathematical analogies between time-
modulated to narrow bounded-beam waves to account for the propagation of ultrashort pulses
of high-energy laser in dispersive media. In fact, using di�erent considerations, a completely inde-
pendent treatment of dispersive waves got close to a complete optical imaging system analogy was
presented earlier by Pierre Tournois (1964). He also proposed to apply this solution to acoustic
waves (Tournois, 1967), but that work has never been followed up. Related concepts have been ap-
plied even earlier, in chirp radar technology, using a technique called pulse compression (Klauder
et al., 1960). Pulse compression in radars employs frequency modulation (FM) to obtain high-power
signals that have a large time-bandwidth product. It requires matched �ltering at the receiver, which
inverts the FM and undoes the pulse compression. In applied optics, dispersion has been successfully
employed to stretch, amplify, and recompress an ultrashort low-energy laser pulse into a powerful one
(Strickland and Mourou, 1985)94. While we adhere to the formalism developed in optics, it should
be noted that ideas from radar technology have been in�uential in the context of bat echolocation
for a long time (Gri�n, 1958, pp. 342�346), including pulse compression signal processing.

93See Drabovich and Chirkin, 1999 for a short professional biography of Akhmanov.
94This seminal experiment won its authors a Nobel Prize in Physics in 2018.
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The basis for the space-time analogy is valid for carrier waves of visible light, such as those
carried by thin, axially uniform, single-mode optic �bers, which can be modulated by low-frequency
microwaves, in a source-free space (Haus, 1984, pp. 178�187). The description of this propagation
is scalar, because electromagnetic polarization that would have made the description vectorial, may
be neglected. It means that with careful inspection of the assumptions, it is straightforward to adapt
the plane-wave scalar equations of light to the plane waves of sound. Therefore, in the following we
will derive the �paraxial� dispersion equation and follow with a presentation of the time lens.

10.2 The �paraxial� approximation of the dispersion

equation

We consider the propagation of a plane wave at z ≥ 0 with known spectrum at z = 0. This
refers to a so-called secondary source, according to Huygens principle, which treats any point on the
wavefront away from the source as a point source (�4.2.2).

Starting from the homogeneous three dimensional acoustic wave equation (e.g., Morse and
Ingard, 1968, p. 282),

∇2p =
1

c2
∂2p

∂2t
(10.1)

Where p is the pressure, and c is the speed of sound. In the plane-wave approximation, the direction
of propagation is arbitrarily set parallel to z, so that the wavenumber components kx = ky = 0 and
the pro�le of the propagating wave may be ignored (i.e., an in�nite plane wavefront). This results
in a one-dimensional equation

∂2p

∂z2
=

1

c2
∂2p

∂2t
(10.2)

A monochromatic solution that satis�es Eq. 10.2 can then take the general form (�3.2.1)

p(x, y, z, t) = p0e
i[ωct−k(ω)z] (10.3)

Where p0 is the pressure wave amplitude, and k(ω) is the frequency-dependent wavenumber in the
medium, which may entail dispersion, if k(ω) ̸= const.

The derivation of the dispersion equation below follows Haus (1984, pp. 179�181) and New
(2011, pp. 128�129) for scalar electromagnetic �elds. The central assumption in this derivation is
that the pressure envelope varies slowly in space, so that the modulation wavelength is much larger
than the carrier, λm ≫ λc, and the corresponding period Tm ≫ Tc (Akhmanov et al., 1968).

Let us posit a known frequency dependence of the medium dispersion k(ω) and a corresponding
dependence on z of the spectrum P (z, ω), assuming that p(z, t) is square-integrable, so it has a
Fourier representation

P (z, ω) = A(ω, 0)e−ik(ω)z (10.4)

Where A(ω, 0) is the initial complex spectral envelope of P (z, ω). Then, along the z-axis, the
following di�erential equation is satis�ed

∂P (z, ω)

∂z
= −ik(ω)P (z, ω) (10.5)

For a slowly-varying complex envelope, the dispersion relation of k(ω) can be approximated using
Taylor series around ωc

k(ω) = kc +
dk

dω
(ω − ωc) +

1

2

d2k

dω2
(ω − ωc)

2 + ... (10.6)
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equation

k(ω) is a complex function, the real part of which is the dispersion and the imaginary part is the
absorption (�3.4.2). kc is the plane wave phase kc = ωc/λ. In a small range around ωc, we consider
the second-order approximation to be accurate enough, given the above slow-varying modulation
condition (though, higher-order terms are frequently used in nonlinear optics). In hearing, the shifted
frequency ω − ωc is referred to as the envelope frequency or modulation frequency and in
communication theory the terms frequency deviation and baseband frequency are used.

We can plug Eq. 10.6 in Eq. 10.5 up to the second derivative of k(ω)

∂P (z, ω)

∂z
= −i

[
kc +

dk

dω
(ω − ωc) +

1

2

d2k

dω2
(ω − ωc)

2

]
P (z, ω) (10.7)

If the spatial dependence of the envelope is shifted to be around ωc, then P (z, ω) can be reformulated
to factor out the constant phase using

P (z, ω) = A(z, ω − ωc)e
−ikcz (10.8)

Where the shifted complex spectral envelope around ωc, A(z, ω − ωc), was introduced and now
contains the spatial dependence in z through the higher order terms of k. Now Eq. 10.7 in P can
be reformulated as an equation in A, eliminating the mean spatial frequency kc

∂A(z, ω − ωc)

∂z
= −i

[
dk

dω
(ω − ωc) +

1

2

d2k

dω2
(ω − ωc)

2

]
A(z, ω − ωc) (10.9)

In order to obtain a time-domain expression of Eq. 10.9, it will be necessary to have the inverse
Fourier transform of the shifted envelope, which can be obtained from the full signal and Eq. 10.8

p(z, t) ≡ 1

2π

∫ ∞

−∞
P (z, ω)eiωtdω =

1

2π

∫ ∞

−∞
A(z, ω − ωc)e

−ikczeiωtdω

=
1

2π
eiωct−ikcz

∫ ∞

−∞
A(z, ω − ωc)e

i(ω−ωc)td(ω − ωc) = a(z, t)eiωct−ikcz (10.10)

which means that the temporal envelope a(z, t) is simply the inverse Fourier transform of the complex
spectral envelope, in the modulation frequency coordinate

1

2π

∫ ∞

−∞
A(z, ω − ωc)e

i(ω−ωc)td(ω − ωc) ≡ F−1 [A(z, ω − ωc)] = a(z, t) (10.11)

This identity enables us to manipulate the complex envelope independently of the carrier, as a
function of modulation frequency, in the narrowband approximation. Note this additional relation
for the inverse Fourier transform

F−1 {[i(ω − ωc)]
nA(z, ω − ωc)} =

∂n

∂tn
a(z, t) (10.12)

The inverse Fourier transform can now be used to convert Eq. 10.9 to the time domain, using Eq.
10.12, which yields the following di�erential parabolic equation for the temporal pressure envelope(

∂

∂z
+
dk

dω

∂

∂t

)
a(z, t) = i

(
1

2

d2k

dω2

∂2

∂t2

)
a(z, t) (10.13)

In most physical conditions, frequency-dependent absorption is usually even with dependence on ω2

(see � 3.4.2) and not on ω, so it is therefore assumed that dk/dω is real. Then the (real) group
velocity is de�ned as usual (Eq. 3.11)

1

vg
=
dk

dω
(10.14)
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Additionally, it is convenient to separate the real and imaginary parts of the second derivative of k.
In general, k(ω) = β(ω) + iα(ω), and the real part of its second derivative is

β′′ = Re

(
d2k

dω2

)
(10.15)

which gives a measure of the group-velocity dispersion (GVD) of the medium, whereas the
imaginary part relates to the absorption, or gain dispersion (Siegman, 1986, p. 335)

α′′ = Im

(
d2k

dω2

)
(10.16)

Finally, Eq. 10.13 may be further tidied up with change of variables to a traveling coordinate system,
using

τ = (t− t0)−
(z − z0)

vg
(10.17)

ζ = z − z0 (10.18)

This change of variables means that the frequency dependence of a is always centered around the
group velocity at ωc, when it is situated at a distance ζ from the origin. The new time coordinate is
in fact the di�erence between the phase time coordinate and the group delay of the pulse, measured
against its reference at (t0, z0) (see �3.2 and Eq. 3.22). Using the chain rule on Eq. 10.13,

∂a(ζ, τ)

∂ζ

∂ζ

∂z
+
∂a(ζ, τ)

∂τ

∂τ

∂z
+

1
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∂a(ζ, τ)

∂τ

∂τ

∂t
=
iβ′′ − α′′

2

[
∂a2(ζ, τ)

∂τ 2

(
∂τ

∂t

)2

+
∂a(ζ, τ)

∂τ

(
∂2τ

∂t2

)]
(10.19)

where we neglected the term with ∂ζ/∂t = 0. Then, after using the de�nitions of ζ and τ , the
equation reduces to

∂a(ζ, τ)

∂ζ
=
iβ′′ − α′′

2

∂2a(ζ, τ)

∂τ 2
(10.20)

As Eq. 10.20 incorporates complex dispersion, it combines e�ects from the di�usion equation (for
absorption) and Schrödinger's equation (for dispersion). This coupling may signi�cantly complicate
the treatment of the imaging system, so in optical treatments of this equation the absorption term is
generally neglected. As it turns out in this work, there is a broad range of useful results that can be
obtained for hearing without resorting to absorption. However, a discussion about the signi�cance
of this term will be revisited in several places (mainly in �F). Therefore, in the remainder of this
work, we will set α = 0 and assume a �classical imaging system�. Therefore,

∂a(ζ, τ)

∂ζ
=
iβ′′

2

∂2a(ζ, τ)

∂τ 2
(10.21)

This is the parabolic dispersion equation, which belongs to the heat equation family and has a very
similar mathematical form to the spatial paraxial equation (4.10). A solution can be given using
an inverse Fourier transform on the initial spectrum at z = 0 (Haberman, 1983, pp. 349�354)95,
multiplied by a quadratic complex kernel

a(ζ, τ) =
1

2π

∫ ∞

−∞
A(0, ω) exp

(
−iβ

′′ζ

2
ω2

)
eiωτdω (10.22)

95Note that the standard di�usion equation has interchanged time and space variables compared to the dispersion
equation (10.21). As a result, the initial spectrum condition for the di�usion equation is at t = 0, whereas here it as
at ζ = 0.
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Eq. 10.21 is the basic propagation transformation in a dispersive medium. Note the similarity to the
Fresnel di�raction integral from spatial optics (Eq. 4.8). This solution, along with the paraxial-like
di�erential equation 10.20, constitute for us the basic space-time analogy.

The term �paraxial� in geometrical optics refers to the sound rays that are considered in the
analysis, which are in the vicinity of the optical axis. In wave optics, the same idea is expressed using
the spatial frequency k, whose range expresses the limited angular variation around the optical axis.
As the dispersion equation strictly deals with uniaxial plane waves, referring to this approximation
as �paraxial� makes little sense here, and we shall instead rename Eq. 10.21 (and Eq. 10.20) to
be the Helmholtz paratonal equation, in analogy to Eq. 4.10. Here, paratonal conveys the
intention of the main approximation that we employ and is applicable to the auditory system�that
of narrowband channels that are centered around a particular carrier, a characteristic frequency, or a
tone. Arguably, the term �paratemporal� may be just as valid as a name, because temporal imaging
is also based on the limited extent of the temporal aperture�a physical time window that e�ectively
turns a continuous wave into a �nite received pulse�in analogy to the �nite extent of the spatial
image �12.

It is important to dwell on the β′′ζ/2 factor in the exponent, of 10.22 which is what characterizes
the group-velocity dispersion of the medium. Its units are s2 / rad, and the units of β′′ are s2/ radm.
As the group-velocity dispersion grows with increasing length of the dispersive path ζ, the total
dispersion between the measurement points is of interest, rather than the speci�c magnitude of ζ.
This may be avoided by using the group delay de�nition instead. For spectral phase dependnce
around ωc of the form

φ(ω) = −k(ω)ζ (10.23)

the group delay is (Eq. 3.21)

τg = −dφ(ω)
dω

(10.24)

so di�erentiating this de�nition produces an alternative expression for β′′z as well

dτg
dω

= −d
2φ

dω2
= ζ

d2k

dω2
= β′′ζ (10.25)

Therefore, the group-velocity dispersion parameter β′′z (that typically appears with the factor of 1/2
from the Taylor expansion) expresses also the curvature of the frequency-dependent phase function.
This equation also shows that the same information contained in the group-velocity dispersion is
available in the group delay derivative. Therefore, we will always prefer to relate to group-delay
dispersion (GDD) instead of group-velocity dispersion, because it better re�ects the method of
calculation, when the distance ζ is unknown.

Basic examples of explicit solutions to the paratonal equation and a review of useful related
expressions are found in �B.

10.3 The time lens

The dispersion integral of Eq. 10.22 can be thought of as an all-pass �lter in the frequency domain,
which has a similar operation to the di�raction integral in the spatial frequency domain. Thus, it is
curious to look for a propagation medium that can produce a multiplicative quadratic phase function
that is analogous to the normal lens, but in the time coordinate instead of the spatial coordinate.

A time lens was de�ned in an analogous way to the spatial lens (Eq. 4.11), using the following
phase function (Kolner and Nazarathy, 1989)

φ(τ) =
ωcτ

2

2fT
(10.26)
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where the time-dependent phase (in the traveling pulse coordinate system) φ(τ) is a quadratic
function of τ and is also dependent on the focal time fT , the temporal equivalent to the focal
length of the spatial lens. The phase function too can be generically expressed using Taylor series
around τ0

φ(τ) = φ0(τ0) +
dφ

dτ
(τ − τ0) +

1

2

d2φ

dτ 2
(τ − τ0)

2 + ... (10.27)

Comparison with Eq. (10.26) at τ0 = 0 suggests that the focal time should be related to the phase
with

fT =
ωc

d2φ
dτ2

(10.28)

The respective response for a time lens with this phase function is

hL(τ) = exp

(
i
ωcτ

2

2fT

)
(10.29)

This is the transfer function of a time-domain all-pass �lter, which is mathematically analogous
to the spatial lens. It will sometimes be more useful in its frequency-domain form, which can be
obtained by Fourier transforming hL(τ),

HL(ω) =

∫ ∞

−∞
exp

(
i
ωcτ

2

2fT

)
e−iωτdτ =

√
2πifT
ωc

exp

(
−ifTω

2

2ωc

)
(10.30)

Where HL(ω) is the frequency-domain impulse response of the �lter. This kind of integral repeats
in several places along the text and is most easily solved using �Siegman's Lemma� (Siegman, 1986,
p. 337), which is given by∫ ∞

−∞
e−Bx2−2Cxdx =

√
π

B
eC

2/B Re(B) > 0 (10.31)

for any complex constants B and C. It can be readily derived by completing the square of the
exponent.

Note that the focus fT has the units of time, so the quantity fT/2ωc has the same units as the
group dispersion factor β′′ζ (s2 / rad). Thus, we de�ne the lens curvature s,

s =
fT
2ωc

(10.32)

And Eq. 10.30 can be brought to the form (Kolner, 1994a)

HL(ω) =
√
4πis exp

(
−isω2

)
(10.33)

The time-lens processing redistributes the power of the various spectral components around the
carrier�an operation that requires an active nonlinear device (Yariv and Yeh, 2007, pp. 278�279).
In optics, such a lens is realized using a phase modulator, which is an active component unlike
the passive dispersive medium. Kolner (1994a) emphasized that the ideal (electro-optic) phase
modulator has to have a linear phase response�independent of the incoming wave amplitude. In
general, the focal time is frequency-dependent, just as in spatial lenses that have a refraction index
that depends on the wavelength of light and a�ects the lens curvature.

Di�erent principles of phase modulation have been developed in optics, but the one that was
favored by Kolner (1994a) is a traveling-wave modulator. It harnesses a microwave oscillation that
is much lower frequency than the carrier and modulates the traversing wave phase as it passes
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through the device. Even if a re�ected backward propagating wave inside the modulator exists,
a good modulator should be coupled only to the forward-propagating mode. Optical modulators
generally rely on the anisotropic index of refraction and two polarization modes of the electromagnetic
radiation in the medium. Optical traveling-wave phase modulators work by slowly electro-optically
modulating the index of refraction in a crystal, along which the light carrier propagates (Yariv and
Yeh, 2007, pp. 429�431). The modulation frequency may be smaller than the carrier, or equal to it
for maximum e�ect. However, analogous properties and related phenomena (e.g., the electro-optic
and acousto-optic e�ects, which can slowly modulate light) do not exist in pure acoustic �elds and
other physical e�ects may have to be harnessed in order to obtain phase modulation. Therefore,
more speci�c details about the optical phase modulators are not central to this analysis, as this is a
point of divergence for the electromagnetic and acoustic scalar wave theories. It will be su�cient to
know the mathematical principle, when we attempt to identify the relevant organ within the auditory
system, even if other mechanisms may be conceived to realize these functions in acoustics. To the
best knowledge of the author, phase modulators have not been systematically discussed outside of
the photonics/optics literature.

10.4 Summary of assumptions

Throughout the above derivation, a number of assumptions were used beyond those of classical
linear acoustics, which enabled the solution. The �rst three assumptions are synonymous with one
another and can fall under the paratonal approximation de�nition:

1. Source: Narrowband signal

2. Source: Slow envelope in comparison with the carrier

3. Source/Medium: k(ω) changes slowly around the carrier; higher order terms than quadratic in
the Taylor series are negligible

4. Medium: Source-free (secondary source wavefront)

5. Medium: Plane waves�one-dimensional propagation with no higher modes

6. Medium: Constant absorption around the carrier, but the derivatives of k(ω) are real, or much
greater than the imaginary part

7. Time lens: phase function is level-independent (linear)

8. Time lens: phase function is quadratic

Unlike di�raction and scattering problems, non-planar spatial modes�functions that vary in the
x and y dimensions�are neglected. Therefore, the paratonal equation is particularly attractive for
communication, because limiting the carrier to a single (planar) mode eliminates any interaction
between envelopes of di�erent modes, which corrupts their shape. When light propagates in an
optical �ber in di�erent �ber modes that have di�erent dispersions associated with them, the mode
can interact (beat) and give rise to dispersion distortion96. In �ber optics, this is the prime reason
for using single-mode �bers, whose dispersion is well-behaved, rather than multi-mode �bers that are
prone to exhibit dispersion distortion, especially over long distances (Haus, 1984; Agrawal, 2001, pp.
1�17). Single-mode optical �bers are employed almost exclusively in the communication industry,
where high channel capacity is required (Mitschke, 2009, p. 8). In the ideal design of single-mode
optical �bers, the dispersive and absorptive e�ects of the �ber for particular carriers are minimal.

96This is not the same as intermodulation disortion, where di�erent carrier frequencies interact. Dispersion
distortion relates to the same frequencies carried in di�erent modes with di�erent group velocities associated with
them. For a rare example in underwater acoustics, see Zhang et al. (2019).
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10.5 Conclusion

The paratonal equation was introduced along with the simplest dispersive medium transformation
and its active dual�the time lens. While these equations have not been used in acoustics or hearing
before, they naturally �t them, given that real sources and their signals can be universally described
as modulated carriers with complex envelopes. Not only do these equations provide a convenient
mathematical analogy to the familiar spatial imaging theory from optics, but they also tackle the
problem of envelope propagation, which has not received any rigorous closed-form treatment in
acoustics.

At this point, all the basic components are available for constructing a complete temporal imaging
system, based on a cascade of dispersion, time-lens, and another dispersion, in analogy to normal
imaging with spatial lens that is sandwiched by di�raction. Before continuing to develop the theory
for such a system in �12, we would �rst like to identify the di�erent dispersive auditory elements
and estimate their magnitudes in �11. This will ground the discussion about the complete imaging
system to the relevant parameters of the ear.
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