
Appendix B

Waves

The main aim of this appendix is to expand the mathematical toolkit that can be used along with
the temporal imaging solutions we obtained in �� 10 to 13. The main emphasis is on the properties
of the group-velocity dispersion, which we have normally referred to as group-delay dispersion.
This quantity has not made it to acoustics until now and it may require some e�ort to develop
the appropriate intuition for it, insofar as it can be applied for audio frequencies. Therefore, the
derivations below are fairly constrained in their scope. It is suggested that the reader become
familiarized with the section about dispersion (�3.2) before reading this appendix.

B.1 Group-velocity dispersion

In the physical world, pure tones do not exist. Additionally, real physical media always exhibit some
dispersion (Brillouin, 1960, p. 3), which means that the modulations that go through them deform
with time and will eventually vanish, as every frequency component that contributes to the envelope
travels at a di�erent phase velocity. Dispersion is also accompanied by absorption in any causal,
physical medium (see 3.4.2). In narrow frequency bands, where the group velocity is about constant
and the medium is not highly absorptive, it is also equal to the signal velocity (Brillouin, 1960, pp.
9�10)�the velocity at which most of the energy of the signal travels, which cannot be higher than c
itself (Brillouin, 1960, pp. 74�79)182. But, in general, the group velocity is frequency dependent as
well. An approximation for the group velocity can be found by expanding the wavenumber k around
a narrow band, centered around center frequency ωc, using Taylor series183:

k(ω) = kc +
dk

dω
(ω − ωc) +

1

2

d2k

dω2
(ω − ωc)

2 + ... (B.1)

where k(ω) is centered around the wavenumber of the center frequency, kc = ωc/c. In general, k
is complex, so its real part represents the medium dispersion and its imaginary part the medium
absorption:

k(ω) = β(ω) + iα(ω) (B.2)

and both parts form a Hilbert-transform pair�they are related through the Kramers-Kronig relations
as long as the propagation medium is linear, time-invariant, and causal (Toll, 1956). The coe�cient

182Note that the term signal velocity is used in the context of waveguide analysis in Morse and Ingard (1968, p.
479), but with a non-standard interpretation. For Morse & Ingard the signal velocity is the velocity of the front of
the wave, which has to be c. However, these are two separate quantities in Brillouin (1960) and elsewhere, where
the signal velocity is not equal to the front velocity, but to the group velocity, unless the medium is dispersionless.

183Note that sometimes the inverse is done, by expanding ω(k) around kc (Eq. 3.9 and Elmore and Heald, 1969,
pp. 431�435). We shall stick with the formalism found in optics, as is also advocated in Lighthill (1965).
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of the linear term is the inverse of the group velocity, Re
(
dk
dω

)
= β′ = 1/vg. The real part of the

coe�cient of the quadratic term stands for the group-velocity dispersion (GVD)184. Taking a
similar approach as New (2011, pp. 120�121) and Siegman (1986, pp. 335�338), let us examine
the e�ect of the GVD on an arbitrary narrowband signal, centered around ωc, while neglecting the
e�ect of absorption, for the moment,

p(z, t) = a(z, t)eiφ(z,t) = a(z, t)ei[ωt−k(ω)z] (B.3)

We take a Gaussian pulse as a particular case, whose width is set by t0 and is centered at z = 0.
Its envelope is

a(0, t) = ae−t2/2t20 (B.4)

From Eq. 10.11, we can obtain the envelope spectrum using Fourier transform centered at ωc

A(0, ω − ωc) =

∫ ∞

−∞
ae−t2/2t20e−i(ω−ωc)tdt =

√
2πat0 exp

[
−1

2
(ω − ωc)

2t20

]
(B.5)

We can apply the dispersive propagation factor k(ω) on the initial spectrum�also a Gaussian�now
propagated to z

A(z, ω − ωc) =
√
2πat0 exp

[
−1

2
(ω − ωc)

2t20

]
exp

{
−iz

[
kc +

1

vg
(ω − ωc) +

1

2
β′′(ω − ωc)

2

]}
(B.6)

where we set the GVD parameter to be β′′ = d2k
dω2 . Finally, we apply the inverse Fourier transform

to get back the time-signal envelope

a(z, t) = F−1 [A(z, ω − ωc)] =
1

2π

∫ ∞

−∞
A(z, ω − ωc)e

i(ω−ωc)td(ω − ωc) (B.7)

The explicit solution can be computed using Siegman's lemma (Eq. 10.31)

p(z, t) = a(z, t)eiωct =
at0√

t20 + iβ′′z
exp [i(ωct− kcz)] exp

[
−1

2

(
t− z

vg

)2
1

t20 + iβ′′z

]
(B.8)

We introduce a traveling wave time coordinate that moves at group velocity, just like in Eq. 10.17

τ = t− z

vg
(B.9)

which is equivalent to the group delay of the envelope. Setting u = β′′z/2, we can tidy up Eq. B.8

p(z, t) = at0

√
t20 − 2iu

t40 + 4u2
exp [i(ωct− kcz)] exp

(
− t20
t40 + 4u2

τ 2

2

)
exp

(
2iu

t40 + 4u2
τ 2

2

)
(B.10)

184This term has not been imported to acoustics, to the best knowledge of the author, except for acoustic mea-
surements of tubes in Latif et al. (2000). Another near-mention may have been in the context of acoustic dispersion
in waveguides. In their analysis of the phase and group velocities of acoustic waveguides, Morse and Ingard (1968,
pp. 477�478) expounded on a similar problem as presented here of a Gaussian pulse propagating in one-dimension,
over the fundamental (plane wave) mode of the tube. However, even though an absorptive �frequency spread� term
appeared in their Taylor expansion of k (as in Eq. B.1), they unfortunately neglected it in their subsequent analysis
and discussion, so GVD never came about. GVD is commonly used in optics and �ber optics (e.g., Agrawal, 2001;
New, 2011).
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Following New (2011), the quadratic term was rearranged so to bring it to the explicit form of a
complex Gaussian, as will be standardized in �B.3, which facilitates the discussion about a pulse
de�ned by a real envelope and a linear chirp. The complete pressure expression of Eq. (B.10)
has four terms, all of which provide valuable insight about the process of pulse dispersion. First,
the narrowband carrier ωc is intact and moves at phase velocity vp = ωc/kc. All other terms are
impacted by the GVD through the propagation variable u, which is proportional to the distance
from z = 0. The Gaussian pulse itself moves at group velocity and becomes broader with distance,
because t

′2
0 = (t40+4u2)/t20 > t20. The amplitude of the pulse decreases with distance approximately

as t0/t′0, but also becomes phase shifted given the imaginary amplitude that depends on u. The
last phase term is a linear chirp that is superimposed on the carrier�a quadratic phase term that
quickly varies with τ . The last term therefore causes the instantaneous frequency around ωc to be
time and space dependent, with a frequency slope of m′ = 2u/(t40 + 4u2) (see Eq. 6.31). All in
all, the e�ect of group dispersion is to introduce both amplitude and frequency modulations, which
generally deform and smear the original modulations. An instructive example of a reference pulse
at z = 0 compared with a dispersed version of itself a little later is drawn in the left plot of Figure
B.1, where all the e�ects mentioned above are visible.

It is instructive to look at three limiting cases. First, when there is no group-velocity dispersion,
so β′′ = 0 and u = 0, the pulse shape and energy do not change or acquire a chirp. Second, critically,
when we have a pure tone, then the time signal has an in�nite width and energy. We can test the
e�ect by setting t0 → ∞. Obviously, in this case there is no longer a pulse, but also no chirping
takes place. Therefore, pure tones do not chirp. The third limiting case occurs when the pulse is
instantaneous�a delta function�so t0 → 0 and the chirping e�ect happens instantaneously as a
transient that depends only on u. This behavior resembles the e�ect of a single re�ection, which
is not dispersive by strict de�nition, but can cause pulse broadening and phase shifts much like
propagation in a dispersive medium (�3.4.3).

It is also important to note that not only are pure tones unsuitable for demonstrating group-
velocity dispersion, but also the entire concept of a single frequency is undetermined when dealing
with real modulations. This is the reason why we preferred to refer to Akhmarov's original �paraxial�
dispersion equation (Eq. 10.20) as paratonal instead. The pre�x �para� is used in the sense
of �closely resembling: almost185�, so paratonal preserves the identity that is associated with the
channel�its carrier and its corresponding pure tone, and the relative narrow bandwidth that is
required.

B.2 Group-velocity absorption

Similar e�ects to dispersion are observed by an analogous manipulation of the absorption (Siegman,
1986, p. 335), which can be explored by examining a strictly imaginary dispersion relation k(ω) =
i
[
α0 + α′(ω − ωc) +

α′′

2
(ω − ωc)

2
]
. Due to the similarity, absorption is sometimes referred to as

gain dispersion, but with opposite signs (Siegman, 1986, 356-360; Haus, 1984, 283-287), so when
any of the α's are positive, there is gain. In most cases (e.g., air, saturated media in lasers) α′ = 0
and only the quadratic e�ect is of interest. The solution to the paratonal equation 10.20 with Eq.
B.4 as input envelope is then a variation on Eq. B.8

p(z, t) =
at0√
t20 − α′′z

exp [i(ωct− kcz) + α0z] exp

(
−1

2

t2

t20 − α′′z

)
α′′ < 0 (B.11)

185From Merriam-Webster's dictionary: https://www.merriam-webster.com/dictionary/para.

https://www.merriam-webster.com/dictionary/para
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Figure B.1: An example of a Gaussian pulse at z = 0 (solid blue) following dispersion (left)
and absorption (right) after moving 30 cm in space (dashed black), according to Eqs. (B.10)
and (B.11) (real part). The �gures show all features of group dispersion discussed in the
text: reduced amplitude, broader pulse, and chirped phase. The chirp can be clearly seen by
comparing the (phase) peak locations before and after the pulse (envelope) peak. While the
phase appears in sync at t = 0, the periods are shorter at t < 0 and longer at t > 0. The
parameters used for dispersion simulation are fc = 600 Hz, vp = c = 343 m/s, t0 = 5 ms,
vg = 0.8c = 274 m/s, β′′ = 0.00008 s2/m rad. For the absorption simulation the same pulse
was used with α0 = −0.3i 1/m, and α′′ = −0.00008i s2/m rad.

where the condition for negative α′′ is necessary to make the Fourier transform solution method
of B.7 tractable. The e�ect on the amplitude of the pulse and the width are apparent directly
from the equation without any additional transformation. A uniform attenuation is applied to the
entire pulse, which is proportional to the distance, when α0 < 0. A time/frequency-dependent
loss broadens the pulse when α′′ < 0, which also scales the amplitude of the pulse accordingly. An
example of absorption is given on the right of Figure B.1 for similar parameters to the above example.
If α′ ̸= 0 then the phase would be a�ected as well, and manifest as a subtler chirp than the linear
chirp caused by the quadratic dispersive terms. However, this can be compounded into a complex
group velocity instead, so its e�ect is less critical. Unlike dispersion, absorption is accompanied by
energy loss.

B.3 Complex pulse calculus

This section presents several useful formulas for working with complex Gaussian functions, which
are used throughout the text. Additionally, it aims to provide some intuition for these functions�
whether they are used as signal envelopes or as �lters.

The fundamental sound pulse used in this work�the sound atom, or the logon�is the complex
Gaussian function that modulates an arbitrary carrier. Its real part in the exponential represents
the energy and width or the pulse, whereas the imaginary part imparts the signal with quadratic
phase186. Strictly speaking, the Gaussian makes for non-analytic signals, because it has a non-zero
negative spectrum. Exactly the same functions are also used as �lters in the imaging transforms
that are employed throughout the text, which are similarly non-causal because they do not vanish at
t < 0. Nevertheless, the complex Gaussian function enables closed-form solutions for all the relevant
equations and is characterized by the same de�ning features as other relevant signals in analysis
(Siegman, 1986; Blinchiko� and Zverev, 2001). Critically, it is the simplest second-order curved

186Note that unlike Gabor's logons (Gabor, 1946), the envelope used here is complex rather than real.



458 B.3. Complex pulse calculus

signal/�lter that has a characteristic duration and chirp (curvature), which enables instantaneous
amplitude and frequency modulations, respectively.

The general class of pulses we consider contains a chirp at the source, which is the simplest type
of frequency modulation (FM). It is easy to see how it directly interacts with the group-velocity
dispersion of the medium. Consider a signal with the complex envelope

a(0, t) = a exp

(
− t2

2t20
+
im0t

2

2

)
(B.12)

where m0 is the frequency velocity�the slope of the instantaneous frequency (Eq. 6.31) of the
signal with envelope a(0, t). As before, we can obtain a full solution to the dispersion problem. For
this purpose, it is convenient to make the following substitution187 of a complex Gaussian width t′,

1

t′2
=

1

t20
− im0 =

1− im0t
2
0

t20
⇒ t

′2 =
t20

1− im0t20
= t20

1 + im0t
2
0

1 +m2
0t

4
0

(B.13)

By using t′ directly in Eq. B.8, we can obtain the full signal at z after propagating through the
dispersive medium

p(z, t) =
t20(1 + im0t

2
0)

1 +m2t40

√
t20(1 + um0)− i(2um2

0t
4
0 +m0t40 + 2u)

(1 + 2m0u)2t40 + 4u2
exp [i(ωct− kcz)]

· exp
[
− t20(1 + um0)

(1 + 2m0u)2t40 + 4u2
τ 2

2

]
exp

[
i(2um2

0t
4
0 +m0t

4
0 + 2u)

(1 + 2m0u)2t40 + 4u2
τ 2

2

]
(B.14)

which indicates that the dispersed chirp slope depends on m0, u and on t0 itself.
The eventual �ltering as is given in Eqs. B.14 and B.11 is most readily treated as a multiplication

of several Gaussian elements, which are then governed by relatively simple operations of scaling. This
operation is also common in imperfect imaging, however, which is implicated by chirping as a result of
defocus. Thus, we would like to �nd out how two arbitrary complex Gaussian functions of the form of
Eq. B.12 interact under multiplication. This is encountered in the (Fourier-transformed) convolution
of the input envelope spectrum with the imaging system transfer function, or equivalently, when a
temporal envelope is processed by a time-domain phase modulator (i.e., a time lens). Let us look
at two complex Gaussians with constant amplitudes, a1 and a2, characterized by parameters t1 and
m1, and t2 and m2, respectively, or the complex widths t′1 and t

′
2. The product of the two complex

Gaussians is

a1(τ)a2(τ) = a1a2 exp

(
− τ 2

2t21
+
im1τ

2

2

)
exp

(
− τ 2

2t22
+
im2τ

2

2

)
= a1a2 exp

[
−(t21 + t22)

2t21t
2
2

τ 2 +
i(m1 +m2)

2
τ 2
]
= a1a2 exp

[
−(t

′2
1 + t

′2
2 )

2t
′2
1 t

′2
2

τ 2
]

(B.15)

Importantly, the third equality shows that the slopes of the linear chirps are additive under modula-
tion, whereas for the pulse width, it is the reciprocal of the width squared that is additive.

Another recurrent operation on the envelope is scaling, where the pulse is being magni�ed by a
factor M as a result of imaging. In this case, the envelope time variable is substituted by τ/M (see
Eq. 12.19)

a
( τ
M

)
=

a0√
M

exp

(
− τ 2

2M2t
′2
0

)
=

a0√
M

exp

(
− τ 2

2M2t20
+
im0τ

2

2M2

)
(B.16)

187A similar approach was developed by Siegman (1986, Chapter 9), where a complex Gaussian parameter was
de�ned as Γ ≡ a−ib, where a = 1/2t20 denotes the width and b denotes frequency slope. A geometrical representation
of Γ is then investigated in the spectral domain, as a function of dispersion and the resultant pulse compression.
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which means that the pulse is magni�ed, while its chirp rate is demagni�ed (for M > 1)

t0
M−→Mt0 (B.17)

m0
M−→ m0

M2
(B.18)

a0
M−→ a0√

M
(B.19)

where the last relation follows from the �rst one.
In some cases, the complex width t′1 of a particular transform is available numerically, but it is

necessary to obtain the underlying width and chirp factors. Bringing it to the form of B.13, this can
be done using these expressions

t1 =

[
Re

(
1

t
′2
1

)]− 1
2

(B.20)

m1 = − Im

(
1

t
′2
1

)
(B.21)

A common and somewhat more realistic linear FM pulse that is often employed (Levanon and
Mozeson, 2004, p. 57) has a rectangular envelope of width T

a(τ) =
a0√
T
rect

(
t

T

)
exp

(
iπmrτ

2
)

mr = ±B
T

(B.22)

where the frequency slope mr is by de�nition the quotient of the bandwidth B and pulse width T .
By comparing the coe�cients of our complex pulse from Eq. B.12, a simple transformation between
the slopes can be obtained

m0 = 2πmr = 2π
B

T
(B.23)

This relation can provide some insight about the magnitude of m0 of the Gaussian pulse. When
the pulse is made narrow, T → 0, its associated frequency velocity can be very large, depending
on the bandwidth B. If in addition the spectral bandwidth is made very large, B → ∞, the
pulse functionally approximates a delta function in the temporal domain. Therefore, the closer the
pulse is to a perfect impulse, the larger is its frequency velocity. If the impulse does not disperse
much in propagation, then its impulse shape is retained, which means that it is experienced almost
instantaneously across the spectrum.

Finally, depending on the application, the e�ective Gaussian pulse width has to be scaled to
constrain its in�nite support, but still preserve some of its characteristics. In photonics, pulses are
customarily quanti�ed using the full-width half maximum (FWHM) of the particular pulse function.
It is de�ned with respect to the pulse power, using t0 as a parameter, so at half the peak amplitude
(quarter the peak power) t = FWHM ·t0 = 2

√
2 ln 2t0 (e.g., New, 2011, p. 120). See Figure B.2

for illustration.
Another example is plotted in Figure B.3 of complex Gaussian and rectangular pulses that have

the same instantaneous frequency in the overlapping duration of the rectangular pulse. The Gaussian
width is set to intersect the rect function so that the two pulses have equal power. Note that it is
impossible to have the total pulse power, the peak amplitude, and the half power simultaneously
equalized.
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Figure B.2: A rectangular pulse (dash-dot black) of duration T and two Gaussian pulses of
di�erent widths t0 relative to T. The amplitude and time are given in arbitrary units, so
that the rectangular pulse has an area of T, whereas the Gaussian pulses are not normalized.
The broad Gaussian in dotted blue has the standard width of 2t20 in the denominator of the
exponent, which indicates that when t = T , the amplitude drops to 1/

√
e and the intensity

to 1/e. Typically, this is not useful when working with t0, so it is preferable to convert it
to equivalent rectangular duration, which is measured across both the negative and positive
support of the pulse. The standard rectangular pulse and the Gaussian that intersects with it
at T/2 have the same width. Then, the conversion between the two is given by the FWHM.
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Figure B.3: Rectangular and Gaussian pulses that have the same instantaneous frequency in
the overlapping duration, according to the substitutions in Eqs. B.22 and B.23, whereB = 150
Hz and T = 0.1 s (of the full rectangular width). The Gaussian has a t0 = T/(2

√
2 ln 2). In

this example, the pulses are normalized to have equal total equal power.
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